Math 1300-018 Quiz 4 Name:

1. Find the derivatives of the following functions (using the definition of the derivative
as a limit).

(a) f(z) =2z -1
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2. Consider the function

(a)

fO)y=1t"—t*—t+1.

The derivative of f is given by f’(t) = 3t*> — 2t — 1. Using this, find the largest
open intervals on which f is increasing and decreasing. At what values of ¢
does f have local extrema?

The derivative f’(t) factors as (3t+1)(t—1) with roots —1/3, 1. The derivative
is positive on (—oo, —1/3)U(1, 00) and negative on (—1/3,1). There is a local
maximum of f(—1/3) = 11/9 at t = —1/3 and a local minimum of f(1) =0
at t = 1.

The second derivative of f is given by f”(t) = 6t — 2. Using this, find the
largest open intervals on which f is concave up and concave down. Find any
inflection points on the graph of f.

The second derivative has only root, at ¢ = 1/3. The second derivative is
positive on (1/3,00) and negative on (—oo, 1/3), so that f is concave up on
(1/3,00) and concave down on (—o0,1/3). There is an inflection point of
(1/3, f(1/3)) = (1/3,16/27) where the concavity changes.



