Splitting factor maps into *s*- and *u*-bijective maps.

Dina Buric

University of Victoria

May 13, 2022

3 Modelling

Let M be a compact smooth manifold. Let Diff(M) be the space of diffeomorphisms with the C^1 topology.

Question

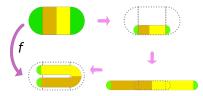
Can we find and classify, up to a reasonable equivalence relation, a subset that is a countable intersection of open dense sets in Diff(M)?

The classification should be manageable i.e there is a countable set of **invariants**.

Definition (Smale 1967)

Let *M* be a smooth manifold with a diffeomorphism $f : M \to M$, then (M, f) is an Axiom A system if the following two conditions hold:

- The non-wandering set is hyperbolic and compact.
- Interpretent of the periodic points are dense.

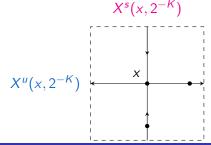


Ruelle defines a Smale space

A Smale space is a hyperbolic dynamical system (X, ϕ) where X is a compact metric space and ϕ is a homeomorphism.

 ${\sf Hyperbolicity} \implies {\sf local \ product \ structure}$

i.e x in X given by local expanding and contracting directions.



Hyperbolic toral automorphism

Let
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

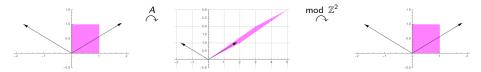
Define $f_A : \mathbb{T}^2 \to \mathbb{T}^2$ by

$$f_{\mathcal{A}}([x]) = [\mathcal{A}x]$$

where x is in \mathbb{R}^2 and [x] denotes its equivalence class in $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. By the integer components and the determinant, f_A is an invertible map.

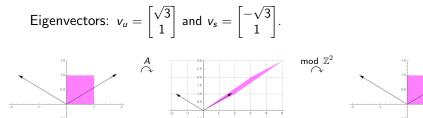
Eigenvalues : $2 + \sqrt{3}$ and $2 - \sqrt{3}$. A is *hyperbolic* \sim none of its eigen-values lie on the unit circle.

Eigenvectors: $v_u = \begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix}$ and $v_s = \begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix}$.

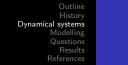


Notice $\mathbb{R}^2 = \{tv_u \mid t \in \mathbb{R}\} \oplus \{tv_s \mid t \in \mathbb{R}\} = E^u \oplus E^s$

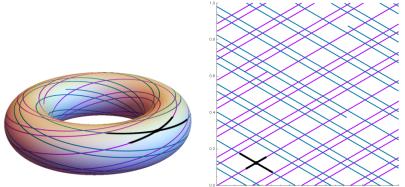
Eigenvalues : $2 + \sqrt{3}$ and $2 - \sqrt{3}$. A is *hyperbolic* \sim none of its eigen-values lie on the unit circle.



Notice $\mathbb{R}^2 = \{tv_u \mid t \in \mathbb{R}\} \oplus \{tv_s \mid t \in \mathbb{R}\} = E^u \oplus E^s$



On a HTA the global unstable and stable sets wrap around densely.



The local stable and unstable sets are given by moving a little bit along the eigendirections. Locally, \mathbb{T}^2 can be viewed as $\mathbb{R} \times \mathbb{R}$.

Shifts of finite type

Let G be a finite directed graph which consists of a vertex set G^0 , an edge set G^1 , and two maps $r, s : G^1 \to G^0$. The source vertex of edge e is given by s(e) and the range vertex is given by r(e).

Definition

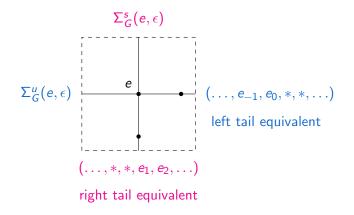
We define

$$\Sigma_G = \{(e_n)_{n \in \mathbb{Z}} \mid e_n \in G^1, \ r(e_n) = s(e_{n+1}) \ ext{ for all } n ext{ in } \mathbb{Z}\}$$

With the left shift map $\sigma: \Sigma_{\mathcal{G}} \to \Sigma_{\mathcal{G}}$,

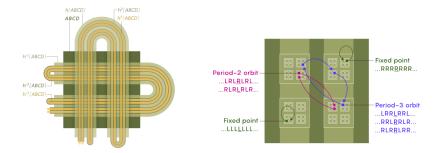
$$\sigma(x)_n = e_{n+1}.$$

Let $e = (\dots, e_{-1}, e_0, e_1, e_2, \dots)$ and $\epsilon < 1/2$, then the local stable and unstable sets of e are given by,



Smale's Horseshoe

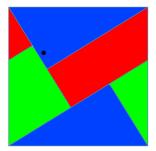
$$(\Sigma_2 = \{0,1\}^{\mathbb{Z}}, \sigma) \Leftrightarrow (H,h)$$



source: Quanta-How mathematicians make sense of chaos-David S. Richeson

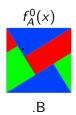
An HTA can be modeled using symbolic dynamics by way of Markov partitions, where $\pi : (\Sigma_G, \sigma) \to (\mathbb{T}^n, A)$ is a finite-to-one factor map.

Let x be in \mathbb{T}^2 , how can we create a coding for this element?



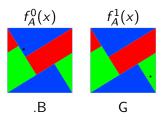
Track the orbits of x.

Each rectangle corresponds to a vertex on the graph G.

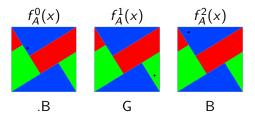


Track the orbits of x.

Each rectangle corresponds to a vertex on the graph G.

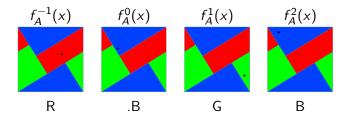


Track the orbits of x. Each rectangle corresponds to a vertex on the graph G.

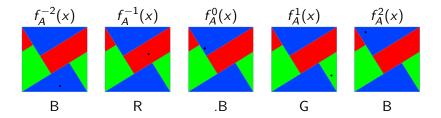



```
Track the orbits of x.
```

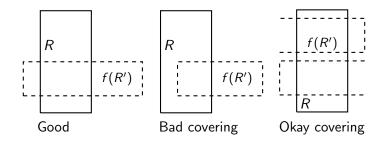
Each rectangle corresponds to a vertex on the graph G.




```
Track the orbits of x.
Each rectangle corresponds to a vertex on the graph G.
```



Markov Property



Theorem (Bowen 1970)

If (X, f) is an irreducible Smale space then (X, f) has Markov partitions. Equivalently, there is a shift of finite type, (Σ, σ) and finite-to-one surjective map $\pi : \Sigma \to X$ with the property that

 $\pi \circ f = \sigma \circ \pi$

i.e a finite-to-one factor map.

$$(\Sigma, \sigma)$$

$$\downarrow^{\pi}$$

$$(X, f)$$

Fact

We say that $\pi : (X, f) \to (Y, g)$ is an *s*-bijective map if for every x in X, the map $\pi : X^{s}(x, \epsilon) \to Y^{s}(\pi(x), \epsilon')$ is a local homeomorphism.

A *u*-bijective map is defined and characterized analogously.

Given (\mathbb{T}^d, f_A) , we can find a factor map π .

where m + n = d.

Note: This map cannot be *s*-bijective nor *u*-bijective.

Given (\mathbb{T}^d, f_A) , we can find a factor map π .

where m + n = d.

Note: This map cannot be *s*-bijective nor *u*-bijective.

Given (\mathbb{T}^d, f_A) , we can find a factor map π .

where m + n = d.

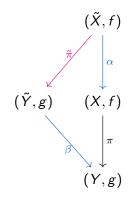
Note: This map cannot be *s*-bijective nor *u*-bijective.

Theorem (Putnam 2005)

Let (X, d_x, f) and (Y, d_Y, g) be irreducible Smale spaces and suppose that

 $\pi: (X, f) \to (Y, g)$

is an almost one-to-one factor map. Then there exist irreducible Smale spaces, (\tilde{X}, f) and (\tilde{Y}, g) and factor maps $\alpha, \beta, \tilde{\pi}$ as shown. Moreover, the diagram is commutative, α and β are u-resolving and $\tilde{\pi}$ is s-resolving.

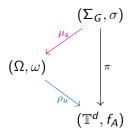


Definition

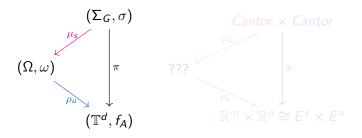
A factor map π has a *splitting*, if it is a composition of a *u*-and *s*-bijective map.

Definition

A factor map π has a *splitting*, if it is a composition of a *u*-and *s*-bijective map.

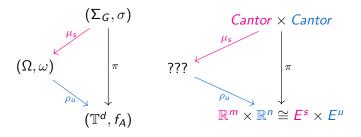


Suppose we have a splitting where μ_s , is an *s*-bijective map and ρ_u , a *u*-bijective map with a commutative diagram,



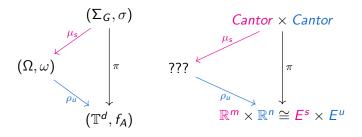
What must Ω look like locally? *Cantor* $\times \mathbb{R}^n$ What is a candidate space for Ω ?

Suppose we have a splitting where μ_s , is an *s*-bijective map and ρ_u , a *u*-bijective map with a commutative diagram,



What must Ω look like locally? *Cantor* $\times \mathbb{R}^n$ What is a candidate space for Ω ?

Suppose we have a splitting where μ_s , is an *s*-bijective map and ρ_u , a *u*-bijective map with a commutative diagram,



What must Ω look like locally? *Cantor* $\times \mathbb{R}^n$ What is a candidate space for Ω ?

Theorem (Williams 1968)

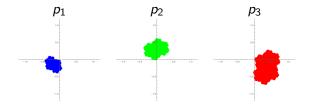
A solenoid is locally Cantor $\times \mathbb{R}^d$.

Theorem (Anderson and Putnam 1998)

A tiling space dynamical system which forces its border is topologically conjugate to a solenoid.

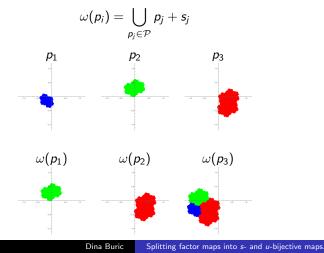
Substitution tiling systems, $(\Omega, \mathcal{P}, \omega)$

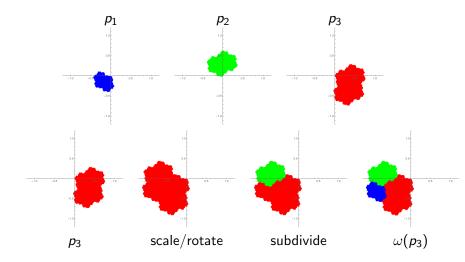
Prototiles, $\mathcal{P} = \{p_1, p_2 \dots, p_n\}$. Each $p_i \subseteq \mathbb{R}^d$ is the closure of its interior.



A tile t is a translation of some prototile.

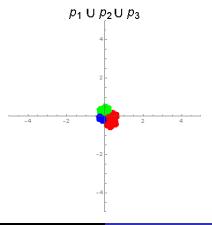
A substitution rule $\omega(p_i)$ that inflates, possibly rotates, p_i , and subdivides with a finite set of translates of prototiles.





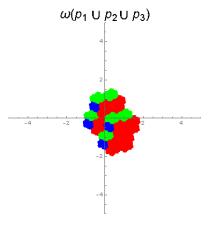
A partial tiling is a collection of tiles whose interiors are pairwise disjoint.

A tiling is a partial tiling whose union is \mathbb{R}^d .



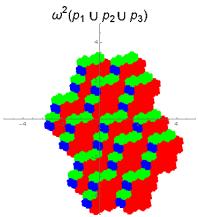
A partial tiling is a collection of tiles whose interiors are pairwise disjoint.

A tiling is a partial tiling whose union is \mathbb{R}^d .

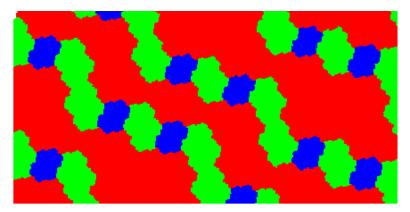


A partial tiling is a collection of tiles whose interiors are pairwise disjoint.

A tiling is a partial tiling whose union is \mathbb{R}^d .

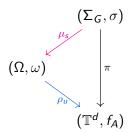


We define Ω to be the set of tilings that contain the patches of T.



Definition

A factor map π has a *splitting*, if it is a composition of a *s* and *u*-bijective map.

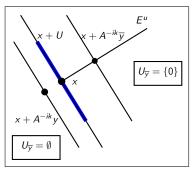


Main questions

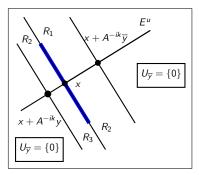
- Given a factor map from SFT to a Smale space, is there a condition for when/if the factor map splits?
- What is the simplest SFT to use as a model? Can we find a factor map for such systems? Can we find a splitting for such systems?
- Focus: Consider an HTA as our Smale space.

Theorem (B, Putnam)

If a splitting for the factor map $\pi: \Sigma \to \mathbb{T}^d$ exists then it must satisfy the Continuous Boundary Condition.

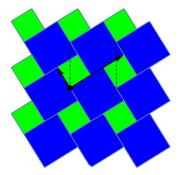


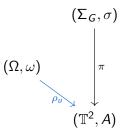
Condition fails.



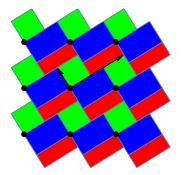
Condition is satisfied.

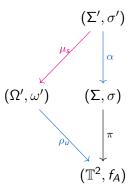
Example for when a splitting does not exist, $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$





Example for when a splitting does exist, $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$





Main questions

- Given a factor map from SFT to a Smale space, is there a condition on if it splits? CBC fails → no splitting.
- What is the simplest SFT to use as a model? Can we find a splitting for such systems?

Main questions

- Given a factor map from SFT to a Smale space, is there a condition on if it splits? CBC fails → no splitting.
- What is the simplest SFT to use as a model? Can we find a splitting for such systems?

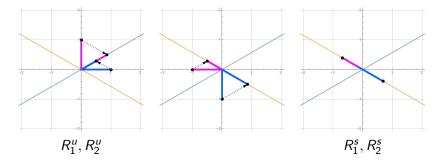
In the 2 \times 2 case, for which HTAs does a splitting exist with the a factor map from a SFT defined by the same matrix?

Theorem (B, Putnam)

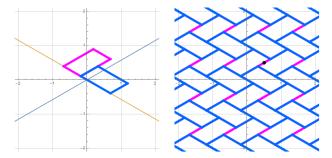
If A is hyperbolic, with det(A) = 1, with positive entries and is not $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ then there exists a factor map from a SFT given by the matrix A^{T} , which has a splitting.

Constructing Markov partitions for (\mathbb{T}^2, f_A)

Let
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
, then $v_u = \begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix}$ and $v_s = \begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix}$



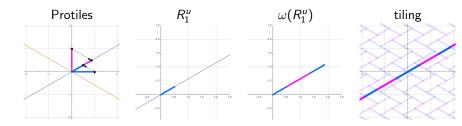
Markov partition ${\cal M}$



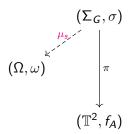
The tiling space (Ω, ω)

Prototiles: The projection of Markov partitions onto E^u Substitution: Given by the Markov property.

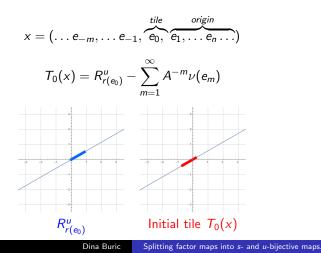
 $\omega(R_1^u) = R_1^u \cup R_2^u + (1,0)^u \cup R_1^u + (1,1)^u$



Tiling space to the SFT, $\rho_u: \Omega \to \mathbb{T}^2$

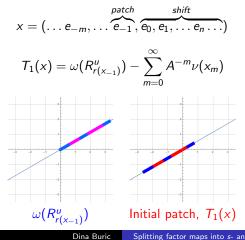


From the SFT to the tiling space, $\mu_s: \Sigma_G \to \Omega$



Outline Modelling Questions Results References

From the SFT to the tiling space, $\mu_s: \Sigma \to \Omega$



Splitting factor maps into s- and u-bijective maps.

From the SFT to the tiling space, $\mu_s: \Sigma_G \to \Omega$

$$x = (\overbrace{\dots e_{-m}, \dots e_{-1}, e_0}^{tiling}, \overbrace{e_1, \dots, e_n, \dots}^{origin})$$
$$T_n(x) = \omega^n (R^u_{r(x_{-n})}) - \sum_{m=-n}^{\infty} A^{-m} \nu(x_m)$$
$$T_n(x) \subseteq T_{n+1}(x)$$
$$T(x) = \bigcup_{n=1}^{\infty} T_n(x)$$

The map $\mu_s : \Sigma_G \to \Omega$ only fails to be one-to-one when:

$$T_0(x) = T_0(x')$$

which only occurs when:

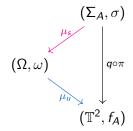
$$x = (..., x_{n-1}, x_n, y, max, max, ...)$$

 $x' = (..., x_{n-1}, x_n, y', min, min, ...)$

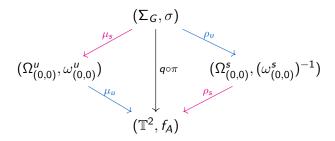
where y' is the successor of y in the ordering of the labels on the edges in E^{u} .

Theorem (B, Putnam)

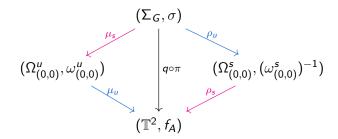
Let $\mu_s : \Omega \to \mathbb{T}^2$ be the Robinson map. Suppose T is in Ω , then $q \circ \pi(\mu_s^{-1}(T))$ contains a single point, which we call $\mu_u(T)$. Moreover, $\mu_u : \Omega \to \mathbb{T}^2$ is a continuous u-bijective factor map.



If A is not of the form $\begin{bmatrix} 1 & 1 \\ c & c+1 \end{bmatrix}$ for some c in \mathbb{N} , then π has a full splitting.

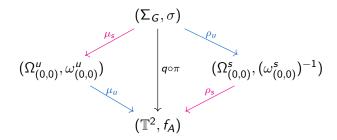


If A is not of the form $\begin{bmatrix} 1 & 1 \\ c & c+1 \end{bmatrix}$ for some c in \mathbb{N} and A is not of the form $\begin{bmatrix} 1 & b \\ 1 & b+1 \end{bmatrix}$ for some b in \mathbb{N} then π has a full splitting.



Only one matrix is of both forms, namely $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$.

If A is not of the form $\begin{bmatrix} 1 & 1 \\ c & c+1 \end{bmatrix}$ for some c in \mathbb{N} and A is not of the form $\begin{bmatrix} 1 & b \\ 1 & b+1 \end{bmatrix}$ for some b in \mathbb{N} then π has a full splitting.



Only one matrix is of both forms, namely $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$.

Outline	
History	
Dynamical systems	
Modelling	
Questions	
Results	
References	

Theorem (B, Putnam)

If A is hyperbolic, with det(A) = 1, positive entries and is not $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ then there exists a factor map from a SFT given by the matrix A^{T} which has a splitting.

Many questions

- What can we say about $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$? Note that $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^2$ has a splitting.
- What about for dimension 3 or above?
- We focused on HTAs, can this work be generalized to other Smale spaces?

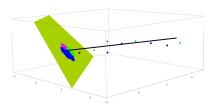
An example for dimension 3

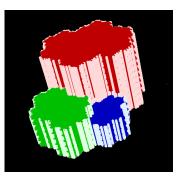
Let
$$B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
. The induced map f_B defines an HTA of \mathbb{T}^3 .

Eigenvalues: $\beta > 1$, $\alpha, \overline{\alpha}$, where $\beta^3 - \beta^2 - \beta - 1 = 0$.

Expanding line and contracting plane.

The Markov partition is given by the following (viewed in \mathbb{R}^3).





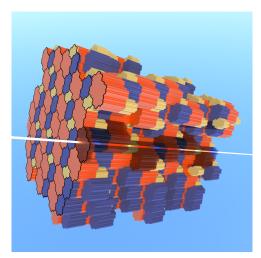
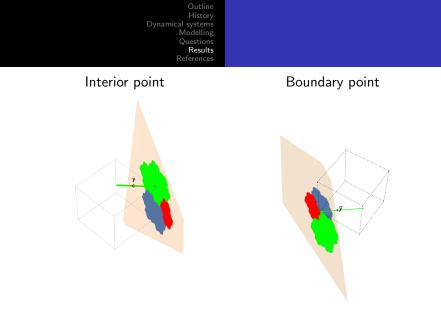


Image created by Edmund O. Harriss

Dina Buric Splitting factor maps into *s*- and *u*-bijective maps.



Condition fails: No splitting for the factor map exists.

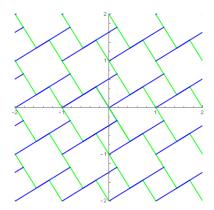
"Of course the most rewarding part is the 'Aha' moment, the excitement of discovery and enjoyment of understanding something new- the feeling of being on top of a hill and having a clear view. But most of the time, doing mathematics for me is like being on a long hike with no trail and no end in sight." -Maryam Mirzakhani

Thank you for your attention!

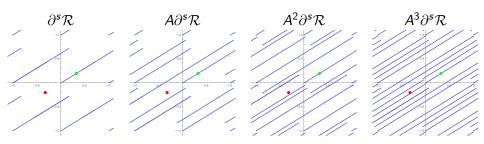
Anderson, Jared E. and Ian F. Putnam (1998). "Topological invariants for substitution tilings and their associated C*-algebras". In: Ergodic Theory Dynam. Systems 18.3, pp. 509–537. ISSN: 0143-3857. DOI: 10.1017/S0143385798100457. URL: http://dx.doi.org/10.1017/S0143385798100457. Bowen, Rufus (1970). "Markov partitions for Axiom A diffeomorphisms". In: Amer. J. Math. 92, pp. 725–747. ISSN: 0002-9327. DOI: 10.2307/2373370. URL: https://doi.org/10.2307/2373370. Putnam, Ian F. (2005). "Lifting factor maps to resolving maps". In: Israel J. Math. 146, pp. 253–280. ISSN: 0021-2172. DOI: 10.1007/BF02773536. URL: https://doi.org/10.1007/BF02773536.

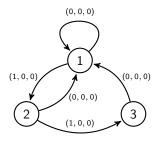
Smale, S. (1967). "Differentiable dynamical systems". In: Bulletin of the American Mathematical Society 73.6, pp. 747–817. DOI: bams/1183529092. URL: https://doi.org/.
 Williams, Robert F. (1968). "Classification of one dimensional attractors". In:

The boundary $\partial \mathcal{R} = \partial^{s} \mathcal{R} \cup \partial^{u} \mathcal{R}$



Our example does not satisfy Condition A.





$$AR_1^u = R_1^u \cup R_2^u - (1,0,0)^s$$

$$AR_2^u = R_1^u \cup R_3^u - (1,0,0)^s$$

$$AR_3^u = R_1^u$$

$$R_1^s = AR_1^s \cup AR_2^s \cup AR_3^s$$
$$R_2^s = AR_1^s + (1,0,0)^s$$
$$R_3^s = AR_2^s + (1,0,0)^s$$