Synchronizing Dynamical Systems

Andrew Stocker

CU Boulder

May 15, 2022

*This research was partially supported by NSF grant DMS 2000057

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

Introduction

Goal: Study local properties of the bracket map (from the definition of a Smale space) and work with expansive dynamical systems where the bracket map is not necessarily defined everywhere.

Definition

A dynamical system (X, φ) is *expansive* if there exists a constant $\varepsilon_X > 0$ such that $d(\varphi^n(x), \varphi^n(y)) \le \varepsilon_X$ for all $n \in \mathbb{Z}$ implies x = y.

C*-Algebras From Expansive Dynamical Systems

(Klaus Thomsen) x, y ∈ X are called *locally conjugate* if there exist open neighborhoods U and V of x and y respectively, and a homeomorphism γ : U → V such that γ(x) = y and

$$\lim_{n\to\pm\infty}\sup_{z\in U}d(\varphi^n(z),\varphi^n(\gamma(z)))=0.$$

For a Smale space these local conjugacies come from the bracket map. In other words, in a Smale space x and y are local conjugate if and only if they are homoclinic.

$$\gamma(z) = \left[\varphi^{-N}\left[\varphi^{N}[z,x],\varphi^{N}(y)\right],\varphi^{N}\left[\varphi^{-N}(y),\varphi^{-N}[x,z]\right]\right]$$

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

C*-Algebras From Expansive Dynamical Systems

This is an equivalence relation! Denote by G^{lc}(X, φ) ⊆ X × X, however we topologize G^{lc}(X, φ) with subbase

 $\{(z,\gamma(z))\mid z\in U\}$

for every local conjugacy $\gamma: U \to V$.

With this topology G^{lc}(X, φ) is an étale groupoid, we construct the groupoid C*-algebra

$$A(X,\varphi) = C_r^*(G^{\mathsf{lc}}(X,\varphi))$$

called the *homoclinic algebra* of (X, φ) .

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

Remark: The *heteroclinic algebras* S and U are related C^* -algebras also constructed from an expansive dynamical system.

For Smale spaces these are exactly the *stable* and *unstable* algebras constructed by Putnam. (Note that Thomsen's construction of these algebras requires periodic points to be dense!)

Synchronizing Systems

► The local stable and unstable sets of x ∈ X are defined as follows.

$$X^{s}(x,\varepsilon) = \{ y \in X \mid d(\varphi^{n}(x),\varphi^{n}(y)) \le \varepsilon \text{ for all } n \ge 0 \}$$

$$X^{u}(x,\varepsilon) = \{ y \in X \mid d(\varphi^{-n}(x),\varphi^{-n}(y)) \le \varepsilon \text{ for all } n \ge 0 \}$$

For 0 < ε ≤ ^εX/₂ the intersection X^s(x, ε) ∩ X^u(y, ε) consists of at most one point (by expansiveness!). Define (Fried):

$$\mathcal{D}_{arepsilon} = \{(x,y) \in X imes X \mid X^{\mathsf{s}}(x,arepsilon) \cap X^{\mathsf{u}}(y,arepsilon)
eq \emptyset\}$$

and a map $[-, -] : D_{\varepsilon} \to X$ such that $[x, y] \in X^{s}(x, \varepsilon) \cap X^{u}(y, \varepsilon)$.

Notes:

[-, -] is continuous
 D_ε is closed and contains Δ_X = {(x, x) | x ∈ X}.

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

Synchronizing Systems

Definition

A point $x \in X$ is called *synchronizing* if there exists $\delta_x > 0$ such that

$$X^{\mathsf{u}}(x,\delta_x) \times X^{\mathsf{s}}(x,\delta_x) \subseteq D_{\varepsilon}$$

and [-,-] restricted to $X^{u}(x, \delta_{x}) \times X^{s}(x, \delta_{x})$ is a homeomorphism onto its image, which is a neighborhood of x.

Definition

An expansive dynamical system (X, φ) is called a *synchronizing system* if it is *irreducible* and there exists a synchronizing point $x \in X$.

Remarks

- Smale spaces are synchronizing systems where every point is synchronizing.
- By irreducibility, synchronizing systems have a dense open set of synchronizing points.
- There exist expansive dynamical systems that are not synchronizing, e.g. minimal (every orbit is dense) expansive dynamical systems such as Toeplitz flows.
- Synchronizing shifts have been studied in symbolic dynamics.

C*-Algebras From Synchronizing Systems

Theorem (Deeley, S.)

Let (X, φ) be a synchronizing system, then

- 1. the synchronizing points determine an ideal $\mathcal{I}_{\mathsf{sync}} \subseteq A(X, \varphi)$, and
- 2. $A(X, \varphi)$ is asymptotically abelian.

Theorem (Deeley, S.)

If (X, φ) is a mixing finitely presented system, then

- 1. $S\otimes U$ is Morita equivalent to $\mathcal{I}_{\mathsf{sync}}$,
- 2. \mathcal{I}_{sync} , S, and U are simple C^* -algebras.

Definition (D. Fried)

Finitely presented systems are synchronizing systems that can be covered by a finite number of "product neighborhoods".

Results: Dense Periodic Points

Theorem (Deeley, S.)

If (X, φ) is a synchronizing system then $Per(X, \varphi)$ is dense in X.

Proof idea: Fix $x \in X$ where x is a synchronizing point, then from non-wandering can find y and n > 0 such that both y and $\varphi^n(y)$ are close enough to x to define $z_0 = [y, \varphi^n(y)]$. Then show the sequence

$$z_{k+1} = [\varphi^{-n}(z_k), \varphi^n(z_k)]$$

has a convergent subsequence. Use following theorem...

Theorem (D. Fried)

For any expansive dynamical (X, φ) system there exists a metric d and constants $\eta > 0$, $0 < \lambda < 1$ such that d is compatible with the topology on X and

$$d(\varphi(x),\varphi(y)) \leq \lambda d(x,y)$$
 for all $y \in X^{s}(x,\eta)$, and
 $d(\varphi^{-1}(x),\varphi^{-1}(y)) \leq \lambda d(x,y)$ for all $y \in X^{u}(x,\eta)$.

Results: Dense Periodic Points

$$z_{k+1} = [\varphi^{-n}(z_k), \varphi^n(z_k)]$$

Shift Spaces

Let \mathcal{A} be a finite set, consider the space $\mathcal{A}^{\mathbb{Z}} = \{(x_i)_{i \in \mathbb{Z}} \mid x_i \in \mathcal{A}\}$. The *shift map* $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is defined by

$$\sigma(\mathbf{x})_i = \mathbf{x}_{i+1}$$

Definitions

- A shift space is a closed subspace X ⊆ A^ℤ which is invariant under σ.
- For a shift space X ⊆ A^ℤ, the set of finite words appearing in any element of X is denoted L(X) ⊆ U_{n≥0} Aⁿ and is called the *language* of X.

We think of (X, σ) as a dynamical system. Shift spaces are expansive!

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

Shift Spaces

Examples:

- Shift spaces that are also Smale spaces are called *shifts of finite type*. A shift of finite type can be constructed as the set of sequences in A^ℤ which do not contain any of the words in a finite set of forbidden words denoted F ⊆ U_{n>0} Aⁿ.
 - The full 2-shift is $\{0,1\}^{\mathbb{Z}}$.
 - ► The "golden mean shift" is the set of all sequences in {0,1}^Z which do not contain consecutive 1's.
- Shift spaces that are also synchronizing are called synchronizing shifts. These have been studied in symbolic dynamics.
 - ► The even shift is the set of all sequences in {0,1}^Z which have an even number of consecutive 0's between any 1's.

Topology on Shift Spaces

In the topology on a shift space, two points x and y are close together if

$$x_{[-N,N]} = x_{-N}x_{-N+1}\cdots x_{N-1}x_N = y_{[-N,N]}$$

Two points x, y ∈ X are (un)stably equivalent in a shift space if for some N ∈ Z

$$x_n = y_n$$
 for all $n \ge N$ (stable)
 $x_n = y_n$ for all $n \le N$ (unstable)

The local stable and unstable sets are

$$X^{s}(x,\varepsilon) = \{ y \in X \mid y_{n} = x_{n} \text{ for all } n \geq N_{\varepsilon} \}$$
$$X^{u}(x,\varepsilon) = \{ y \in X \mid y_{n} = x_{n} \text{ for all } n \leq N_{\varepsilon} \}$$

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

Shift Spaces

Let x ∈ X be synchronizing, δ_x > 0 such that for y ∈ X^u(x, δ_x), z ∈ X^s(x, δ_x) we have the following:

$$y = (\dots x_{-N-2}x_{-N-1})(x_{-N}x_{-N+1}\dots x_{N-1}x_N)(y_{N+1}y_{N+2}\dots)$$

$$z = (\dots z_{-N-2}z_{-N-1})(x_{-N}x_{-N+1}\dots x_{N-1}x_N)(x_{N+1}x_{N+2}\dots)$$

$$\downarrow$$

 $[y, z] = (\dots z_{-N-2} z_{-N-1})(x_{-N} x_{-N+1} \dots x_{N-1} x_N)(y_{N+1} y_{N+2} \dots)$

A synchronizing word in a shift space X is a word w such that if u, v are words such that uw, wv ∈ L(X), then uwv ∈ L(X). Synchronizing shifts are irreducible shift spaces which contain a synchronizing word.

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

Shift Spaces

Local conjugacy relation for shift spaces:

► Two points x, y ∈ X are locally conjugate if for some N large enough, there is a bijection constructed as follows. Let z satisfy z_[-N,N] = x_[-N,N].

$$z = (\dots z_{-N-2} z_{-N-1})(x_{-N} x_{-N+1} \dots x_{N-1} x_N)(z_{N+1} z_{N+2} \dots)$$
$$\downarrow \gamma$$
$$\gamma(z) = (\dots z_{-N-2} z_{-N-1})(y_{-N} y_{-N+1} \dots y_{N-1} y_N)(z_{N+1} z_{N+2} \dots)$$

 (Krieger) We can construct the homoclinic algebra of a shift space by considering equivalence classes of words arising from the bijection above.

Let $X \subseteq \{0,1\}^{\mathbb{Z}}$ be the set of all elements of $\{0,1\}^{\mathbb{Z}}$ which do not contain the word $10^{2k+1}1$ for any $k \ge 0$. This is a shift space called the *even shift*.

The even shift is a *sofic shift* (not a Smale space!).

Consider the sequence of all zeros:

 $\overline{0} = \ldots 00000 \ldots \in X$

This point is *not* synchronizing! Let $x \in X^{u}(\overline{0}, \varepsilon)$ and $y \in X^{s}(\overline{0}, \varepsilon)$.

 $x = \dots 001000000 \dots$ $y = \dots 000000100 \dots$ $[x, y] = \dots 001000100 \dots$

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

Bratteli diagram for the homoclinic algebra of the even shift:

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

- The Bratteli diagram determines the homoclinic algebra A(X, σ) of the even shift. In particular A(X, σ) is an AF-algebra (for all shift spaces).
- The K-theory of A can be computed as

$$K_0(A) = \lim_{\longrightarrow} \left\{ \mathbb{Z}^5 \xrightarrow{P} \mathbb{Z}^5 \xrightarrow{P} \dots \right\}$$

where

$$P=egin{pmatrix} 1&1&1&1&2\ 1&0&1&0&0\ 1&1&0&0&0\ 1&0&0&0&0\ 0&0&0&0&1 \end{pmatrix}$$

is the matrix encoding the edge relations in the Bratteli diagram.

Andrew Stocker (CU Boulder)

For the even shift, the stable algebra S and the unstable algebra U can be computed via Bratteli diagrams similar to the previous one, where

$$P^{s} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \qquad P^{u} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The ideal \mathcal{I}_{sync} in the even shift is built from the vertices in the Bratteli diagram representing equivalence classes of synchronizing words. In particular we have the following.

$$P_{\text{sync}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \cong \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = P_{\text{sync}}^{s} \otimes P_{\text{sync}}^{u}$$

Infinite Rank Example

Let $X \subseteq \{a, b, c\}^{\mathbb{Z}}$ be the closure of the set of bi-infinite paths on the following graph

This is a synchronizing shift: for example the word 'a' is synchronizing.

Andrew Stocker (CU Boulder)

Synchronizing Dynamical Systems

Infinite Rank Example

Bratteli diagram* for stable algebra of X (with respect to the periodic point $\overline{a} = \dots aaa.aa.\dots$).

Results

If (X, φ) is a synchronizing system and $x, y \in X$ are locally conjugate, then x is synchronizing if and only if y is synchronizing. Hence we have an ideal $\mathcal{I}_{sync} \subseteq A$ and a short exact sequence

$$0 \longrightarrow \mathcal{I}_{\mathsf{sync}} \longrightarrow A \longrightarrow A/\mathcal{I}_{\mathsf{sync}} \longrightarrow 0$$

The ideal \mathcal{I}_{sync} has similar properties to a Smale space C^* -algebra.

- For example the even shift has only one non-synchronizing point, and A/I_{sync} ≃ C.
- Expansive homeomorphisms on surfaces have only a finite number of non-synchronizing points, and so A/I_{sync} is a finite dimensional C*-algebra.

Results

We can think of the K-theory of the C*-algebras A, S, and U as giving information about what type of expansive system (X, φ) is.

Theorem (S.)

For an expansive dynamical system (X, φ) , if $S \otimes U$ is not Mortia equivalent to A then (X, φ) is not a Smale space.

For example, this is not true for the even shift, so it cannot be a shift of finite type.

Theorem (S.)

For a shift space (X, σ) , if the rank of $K_0(A)$ is not finite then X cannot be a sofic shift.

The aⁿbⁿ-shift has infinite rank K-theory, and is not a sofic shift.

References

Thank you!

- K. Thomsen, C*-Algebras of Homoclinic and Heteroclinic Structure in Expansive Dynamical Systems
- D. Fried, Finitely Presented Dynamical Systems
- ▶ I. Putnam, C*-Algebras From Smale Spaces
- D. Ruelle, *Thermodynamic Formalism*
- Lind, Marcus, An Introduction to Symbolic Dynamics and Coding