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Intro

A Smale space consists of a compact metric space and a
homeomorphism (X, ) with canonical expanding and contracting
directions.

Smale spaces were introduced by David Ruelle and include:

e Shifts of finite type (Smale’s horseshoe),

@ Hyperbolic toral automorphisms,
@ Solenoids (Bob Williams and Susie Weiler):

e Dynamical systems associated with certain substitution tiling
spaces (Anderson and Putnam),

e Solenoids associated to the limit space of a contracting
self-similar group (Nekrashevych),

@ the basic sets of Smale’s Axiom A systems (Ruelle).



A Hyperbolic Toral Automorphism

Let A be the matrix

[EE Y

o =
~_

e A:T? — T? is a homeomorphism, where T? = R?/Z2.

o Let v = % be the golden mean.

o The eigenvalues for A are vy > 1 and —y 7}

eigenvectors

w=(7) e w=( 1)

corresponding with
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Hyperbolic Toral Automorphism



o Consider the dynamical system (T2, A) and let x, y be in T?.
We aim to define equivalence relations with respect to the
homeomorphism A.

e Stable equivalence:

x~sy <= lim d(A"(x),A"(y)) =0.

n— oo

o Let X*(x) denote the stable equivalence class of x and observe:
X5(x) = {x + tvs(modZ?) | t € R}.
e For 0 < & < 1/2, define the local stable equivalence class of x:

X5(x,€) = {x + tvs(modZ?) | |t| < ¢}.



@ Similarly, unstable equivalence:

X~y y <= lim d(A7"(x),A""(y)) =0.
n—oo
@ Let X“(x) denote the unstable equivalence class of x and
observe:

XU(x) = {x + tv,(modZ?) | t € R}.
@ For 0 < € < 1/2, define the local unstable equivalence class of
X:
XU(x,€) = {x + tv,(modZ?) | |t| < €}.



(1,0)

Local and global equivalence classes of x



@ Homoclinic equivalence:
Xr~pYy <= X~gyand x ~,y.

o Let X"(x) denote the homoclinic equivalence class of x and
observe:
Xh(x) = X5(x) N X4(x).
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The points where the dashed lines intersect are homoclinic to x



General definition of a Smale space

A Smale space is a compact metric space (X, d) with a
homeomorphism ¢ : X — X such that there exist constants
ex > 0, > 1 and bracket map

(x,y) € X, d(x,y) <ex = [x,y] € X
satisfying:

Bl [x,x] = x,

B2 [x, [y, 2]] = [x, 2],

B3 [[x,y]. 2] =[x, 2],

B4 ¢[x,y] = [¢p(x), o(¥)];

for any x, y,z in X, where both sides of the equality are defined.



For each x in X and 0 < € < ¢y, define sets
XS(X,E) = {.y e X | d(X’y) < g, [y7X] = X}a
XU(x,e) ={y e X | d(x,y) <e,[x,y] = x}.
The two final axioms are

C1 For y,z in X*(x,ex), we have

d(e(y), ¢(2)) < A7 d(y, 2),

C2 For y,z in X“(x,ex), we have

d(e7H(y), 97 (2)) < ATHd(y, 2).



XY(y,e)

XY(x,¢€)
[y, x] y
X*(x,¢) o]
X X,y

The bracket map

X3(y,¢)



Note that if a bracket map exists on (X, ) then it's unique.

We typically study Smale spaces with topological recurrence
conditions. Let (X, ) be a dynamical system, then:

@ A point x in X is called non-wandering if for every open set U
containing x, there is a positive integer N such that
©NV(U) N U is non-empty. We say that (X, ) is
non-wandering if every point of X is non-wandering.

e (X, ) is said to be irreducible if, for every (ordered) pair of
non-empty sets U, V, there is a positive integer N such that
©N(U) N V is non-empty.

e (X, ) is said to be mixing if, for every (ordered) pair of
non-empty sets U, V, there is a positive integer N such that
©"(U) NV is non-empty for all n > N.



Smale's Decomposition Theorem

Theorem (Smale's Decomposition Theorem)
Let (X, ) be a Smale space.

e If (X, ) is non-wandering, then there exists a partition of X
into a finite number of clopen, pairwise disjoint subsets, each
of which is invariant under ¢ and so that the restriction of
to each is irreducible. Moreover, this decomposition is unique.

e If (X, ) is irreducible, then then there exists a partition of X
into a finite number of clopen, pairwise disjoint subsets which
are cyclicly permuted by . If the number of these sets is N,
then N (which leaves each invariant) is mixing on each
element of the partition.



Markov partitions and Bowen's Theorem

Theorem (Bowen 1970)

Suppose (X, ¢) is an irreducible Smale space. Then there is a shift
of finite type (X,0) and a factor map = : (X,0) — (X, ¢) such
that m is finite-to-one and one-to-one on a dense Gg subset of ¥..

A non-empty subset R C X is called a rectangle if diam(R) < ex
and [x, y] € R, for any x,y € R.

Bowen's proof showed that irreducible Smale spaces admit Markov
partitions of arbitrarily small diameter; that is, the space X can be
partitioned into closed rectangles that respect the dynamical
structure and overlap only on their boundaries.



Markov partitions and Bowen's Theorem
Encoding the point (1/2,1/2) € T? as a sequence in (X3,0):




Markov partitions and Bowen's Theorem
Encoding the point (1/2,1/2) € T? as a sequence in (X3,0):

21



Markov partitions and Bowen's Theorem
Encoding the point (1/2,1/2) € T? as a sequence in (X3,0):

213



Markov partitions and Bowen's Theorem
Encoding the point (1/2,1/2) € T? as a sequence in (X3,0):

(1/2?1/2)

1

...213213213.213213213...



Markov partitions and Bowen's Theorem

For a Smale space (X, ¢), suppose R1 is a Markov partition with
sufficiently small diameter.

The Markov property implies that we can find Markov partitions
Rn, for n > 2, where each R, refines R,_1 and diam(R,) goes to
zero.

The sequence (Rp)nen is the main ingredient for deriving Bowen's
factor map.



Groupoids (Ruelle, Putnam-Spielberg)

@ Define global equivalence relations as follows:

X(x)={y € X | d(¢"(x),¢"(y)) = 0 as n — oo},
X'(x)={y e X|d(p "(x),¢ "(y)) = 0 as n— oo}.

@ Let (X, ) be a Smale space and let P be a periodic orbit. Let

X*(Py=J X*(p)

peP

X“(P)=J x“(p)

peP
Xh(P) = X*(P)n X“(P).

o Under mild hypotheses, X"(P) is countable and dense.



(0,0) (1,0)
Hyperbolic Toral Automorphism: X"({(0,0)})



@ Stable and unstable equivalence leads to groupoids on
(X.d,p):

G*(X,p,P)={(v,w)|v ~s w and v,w € X“(P)}
GY(X, ¢, P) ={(v,w)|v ~, wand v,w € X*(P)}
Gh(X, ) = {(v,w)|v ~, w and v ~¢ w}.

@ These are called the stable, unstable and homoclinic
groupoids of a Smale space.

@ These groupoids are independent of P, up to groupoid
equivalence (meaning the C*-algebras will be strongly Morita
equivalent).



Stable groupoid topology

@ Suppose v ~s w and v, w € X“(Q).
o There exists N such that d(p"(v), "N (w)) < ex/2.

@ Choose § > 0 small enough so that the diameter of
oN(XH“(w,6)) and "N (XH(v,d)) is smaller than ex/2.

Then there is a local homeomorphism
h®: XY(w,d) — XY(v,0)

which is defined pictorially on the next page.
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X¥(v)

X4 X

oM (x)

#N(v)

h*(x) = ¢~ M[p"(x), 6" (v)]

v

X*(v)

The local homeomorphism h® :

XS
oM (w)

XU(w,d) — X“(v,ex)

X*(w)



C*-algebras

e C.(G*(X,p, P)) is a complex linear space with
e Convolution product

ab(x,y) = Z a(x, z)b(z, y)

(x,2)EG3(X,¢,P)

e Involution

a*(x,y) = a(y, x).

@ Represent C.(G*(X, ¢, P)) as bounded operators on
2(X"(P)) via

@)= > alxy)ly).

(x.y)EG3(X,p,P)



Suppose a is a function in C.(G*(X, ¢, P)) with support on the
basic set V*(v,w, h*,0) .

Let {6x | x € X"(P)} denote the usual basis of Dirac delta
functions in H = 2(X"(P)).

Then,
7T(a)(sX = a(hS(X)¢ X)(shs(x)

if x € XY(w, d) and zero otherwise.
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X4(w,d)
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The local homeomorphism h* : X“(w, ) — X“(v,ex)



e Definition: The stable C*-algebra S(X, ¢, P) is defined to be
the completion of C.(G*(X, ¢, P)) in the operator norm of H.
Moreover, S(X, ¢, P) is independent of P up to Morita
equivalence, so we'll denote it by S (in fact, they are
independent up to isomorphism in the mixing case due to
papers by Strung - Deeley and Deeley - Goffeng - Yashinski).

e Definition: The unstable C*-algebra U(X, ¢, P) is defined to
be the completion of C.(GY(X,p, P)) in the operator norm of
‘H and is independent of P up to Morita equivalence, so we'll
denote it by . (same).

e Definition: The homoclinic C*-algebra H(X, ) is defined to
be the completion of C.(G"(X,¢)) in the operator norm of H
and we denote it by H. (same).



Ruelle Algebras (Putnam)

@ The homeomorphism ¢ induces an inner automorphism on the
algebras by

a(a)(x.y) = a(e” (x). 97 (y))
@ The crossed product
R® =8 %, Z,

is called the stable Ruelle algebra.
@ Similarly, the unstable and homoclinic Ruelle algebras are the
crossed products

RY:=Ux,7Z and R":=Hx,Z.

Theorem (Putnam and Spielberg 1999)

Suppose (X, @) is irreducible. Then R® and R" are separable,
simple, stable, nuclear, purely infinite, and satisfy the UCT.
Moreover, they're independent of P up to strong Morita
equivalence.



Wieler-Smale spaces

Definition (Wieler 2014)

Suppose V is a compact metric spaceand g: V — Vis a
continuous surjection. We say (V/, g) satisfies Wieler’s axioms if
there exists constants 3 > 0, K € N, and v € (0,1) such that the

following hold:
Axiom 1 If v,w € V satisfy d(v,w) < j3, then

d(g"(v). g"(w)) < +*d(g°"(v), g (w)).
Axiom 2 For all v € V and € € (0, 5]

g (B(g"(v).)) € &"(B(v,2)).



Wieler-Smale spaces

@ Suppose V is a compact metric spaceand g: V — Visa
continuous surjection. We define

Xy = {(vi)ien € V': vi = g(vis1)} (1)
along with a map ¢, : Xy — Xy given by
pg(vo, va,...) = (g(w), vo, v1, .. .)- (2)

Theorem (Wieler 2014)

(A) Suppose (V,g) satisfies Wieler's axioms, then (Xv, pg) is an
irreducible Smale space with totally disconnected stable sets.

(B) Suppose (X, ) is an irreducible Smale space with totally
disconnected stable sets. Then there exists a pair (V, g)
satisfying Wieler's axioms such that (X, ) is conjugate to

(XV7 4Pg)-



n-solenoids

o Consider S :=R/Z and g(x) = nx (mod 1).
@ We will abuse notation and write nx for nx (mod 1).

o Then (S%, g) satisfies Wieler's axioms, and Wieler's Theorem
gives the Smale space

X51 = {(X07X1>X27 .- ) | Xi € [07 1)>Xi — NXjy1 € Z}
with dynamics

g (x0, X1, %2, ... ) = (nxg, X0, X1, X2, . . . ).

@ For d(x,y) <1/2let t = xgp — yo. Then the bracket map is
defined by

X, y] == (o +t,y1 + n_lt,)/2 +n72t,. o)



A geometric picture of a 2-solenoid

T

Picture borrowed from:
G. Conner, M. Meilstrup, and D. Repovs, The geometry and
fundamental groups of solenoid complements, ArXiv: 1212.0128
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