An introduction to Smale spaces and their groupoids

Mike Whittaker

University of Glasgow

Smale space conference

13 May 2022

Plan

- 1. Intro and Example: A hyperbolic toral automorphism
- 2. Introduction to Smale spaces
- 3. Smale's decomposition theorem and Bowen's theorem
- 4. Groupoids associated with Smale spaces
- 5. C^* -algebras of Smale spaces
- 6. Wieler solenoids

Intro

A Smale space consists of a compact metric space and a homeomorphism (X, φ) with canonical expanding and contracting directions.

Smale spaces were introduced by David Ruelle and include:

- Shifts of finite type (Smale's horseshoe),
- Hyperbolic toral automorphisms,
- Solenoids (Bob Williams and Susie Weiler):
 - Dynamical systems associated with certain substitution tiling spaces (Anderson and Putnam),
 - Solenoids associated to the limit space of a contracting self-similar group (Nekrashevych),
- the basic sets of Smale's Axiom A systems (Ruelle).

A Hyperbolic Toral Automorphism

Let A be the matrix

$$A = \left(\begin{array}{rrr} 1 & 1 \\ 1 & 0 \end{array}\right)$$

- $A: \mathbb{T}^2 \to \mathbb{T}^2$ is a homeomorphism, where $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$.
- Let $\gamma = \frac{1+\sqrt{5}}{2}$ be the golden mean.
- The eigenvalues for A are $\gamma>1$ and $-\gamma^{-1}$ corresponding with eigenvectors

$$v_u = \begin{pmatrix} \gamma \\ 1 \end{pmatrix}$$
 and $v_s = \begin{pmatrix} 1 \\ -\gamma \end{pmatrix}$.

Hyperbolic Toral Automorphism

- Consider the dynamical system (T², A) and let x, y be in T².
 We aim to define equivalence relations with respect to the homeomorphism A.
 - Stable equivalence:

$$x \sim_s y \iff \lim_{n \to \infty} d(A^n(x), A^n(y)) = 0.$$

• Let $X^{s}(x)$ denote the stable equivalence class of x and observe:

$$X^{s}(x) = \{x + tv_{s}(\operatorname{mod}\mathbb{Z}^{2}) \mid t \in \mathbb{R}\}.$$

• For $0 < \varepsilon < 1/2$, define the local stable equivalence class of x:

$$X^{s}(x,\varepsilon) = \{x + tv_{s}(\operatorname{mod}\mathbb{Z}^{2}) \mid |t| < \varepsilon\}.$$

• Similarly, unstable equivalence:

$$x \sim_u y \iff \lim_{n \to \infty} d(A^{-n}(x), A^{-n}(y)) = 0.$$

• Let $X^u(x)$ denote the unstable equivalence class of x and observe:

$$X^{u}(x) = \{x + tv_{u}(\operatorname{mod}\mathbb{Z}^{2}) \mid t \in \mathbb{R}\}.$$

• For 0 < ε < 1/2, define the local unstable equivalence class of x:

$$X^{u}(x,\varepsilon) = \{x + tv_{u}(\mathrm{mod}\mathbb{Z}^{2}) \mid |t| < \varepsilon\}.$$

Local and global equivalence classes of x

• Homoclinic equivalence:

$$x \sim_h y \iff x \sim_s y \text{ and } x \sim_u y.$$

• Let $X^h(x)$ denote the homoclinic equivalence class of x and observe:

$$X^h(x) = X^s(x) \cap X^u(x).$$

The points where the dashed lines intersect are homoclinic to x

General definition of a Smale space

A Smale space is a compact metric space (X, d) with a homeomorphism $\varphi : X \to X$ such that there exist constants $\varepsilon_X > 0, \lambda > 1$ and bracket map

$$(x,y) \in X, d(x,y) \leq \varepsilon_X \mapsto [x,y] \in X$$

satisfying:

B1
$$[x, x] = x$$
,
B2 $[x, [y, z]] = [x, z]$,
B3 $[[x, y], z] = [x, z]$,
B4 $\varphi[x, y] = [\varphi(x), \varphi(y)]$

for any x, y, z in X, where both sides of the equality are defined.

For each x in X and $0 < \varepsilon \leq \varepsilon_X$, define sets

$$X^{s}(x,\varepsilon) = \{y \in X \mid d(x,y) \le \varepsilon, [y,x] = x\}, X^{u}(x,\varepsilon) = \{y \in X \mid d(x,y) \le \varepsilon, [x,y] = x\}.$$

The two final axioms are

C1 For y, z in $X^s(x, \varepsilon_X)$, we have $d(\varphi(y), \varphi(z)) \leq \lambda^{-1} d(y, z),$

C2 For y, z in $X^u(x, \varepsilon_X)$, we have

$$d(\varphi^{-1}(y),\varphi^{-1}(z)) \leq \lambda^{-1}d(y,z).$$

The bracket map

Note that if a bracket map exists on (X, φ) then it's unique.

We typically study Smale spaces with topological recurrence conditions. Let (X, φ) be a dynamical system, then:

- A point x in X is called *non-wandering* if for every open set U containing x, there is a positive integer N such that φ^N(U) ∩ U is non-empty. We say that (X, φ) is non-wandering if every point of X is non-wandering.
- (X, φ) is said to be *irreducible* if, for every (ordered) pair of non-empty sets U, V, there is a positive integer N such that φ^N(U) ∩ V is non-empty.
- (X, φ) is said to be *mixing* if, for every (ordered) pair of non-empty sets U, V, there is a positive integer N such that φⁿ(U) ∩ V is non-empty for all n ≥ N.

Smale's Decomposition Theorem

Theorem (Smale's Decomposition Theorem)

Let (X, φ) be a Smale space.

- If (X, φ) is non-wandering, then there exists a partition of X into a finite number of clopen, pairwise disjoint subsets, each of which is invariant under φ and so that the restriction of φ to each is irreducible. Moreover, this decomposition is unique.
- If (X, φ) is irreducible, then then there exists a partition of X into a finite number of clopen, pairwise disjoint subsets which are cyclicly permuted by φ. If the number of these sets is N, then φ^N (which leaves each invariant) is mixing on each element of the partition.

Markov partitions and Bowen's Theorem

Theorem (Bowen 1970)

Suppose (X, φ) is an irreducible Smale space. Then there is a shift of finite type (Σ, σ) and a factor map $\pi : (\Sigma, \sigma) \to (X, \varphi)$ such that π is finite-to-one and one-to-one on a dense G_{δ} subset of Σ .

A non-empty subset $R \subset X$ is called a *rectangle* if diam $(R) \leq \varepsilon_X$ and $[x, y] \in R$, for any $x, y \in R$.

Bowen's proof showed that irreducible Smale spaces admit Markov partitions of arbitrarily small diameter; that is, the space X can be partitioned into closed rectangles that respect the dynamical structure and overlap only on their boundaries.

...213213213.213213213...

Markov partitions and Bowen's Theorem

For a Smale space (X, φ) , suppose \mathcal{R}_1 is a Markov partition with sufficiently small diameter.

The Markov property implies that we can find Markov partitions \mathcal{R}_n , for $n \ge 2$, where each \mathcal{R}_n refines \mathcal{R}_{n-1} and diam (\mathcal{R}_n) goes to zero.

The sequence $(\mathcal{R}_n)_{n \in \mathbb{N}}$ is the main ingredient for deriving Bowen's factor map.

Groupoids (Ruelle, Putnam-Spielberg)

• Define global equivalence relations as follows:

$$X^{s}(x) = \{ y \in X \mid d(\varphi^{n}(x), \varphi^{n}(y)) \to 0 \text{ as } n \to \infty \},$$

$$X^{u}(x) = \{ y \in X \mid d(\varphi^{-n}(x), \varphi^{-n}(y)) \to 0 \text{ as } n \to \infty \}.$$

• Let (X, φ) be a Smale space and let P be a periodic orbit. Let

$$X^{s}(P) = \bigcup_{p \in P} X^{s}(p)$$
$$X^{u}(P) = \bigcup_{p \in P} X^{u}(p)$$
$$X^{h}(P) = X^{s}(P) \cap X^{u}(P).$$

• Under mild hypotheses, $X^h(P)$ is countable and dense.

Hyperbolic Toral Automorphism: $X^h(\{(0,0)\})$

Stable and unstable equivalence leads to groupoids on (X, d, φ):

$$G^{s}(X,\varphi,P) = \{(v,w)|v \sim_{s} w \text{ and } v,w \in X^{u}(P)\}$$

$$G^{u}(X,\varphi,P) = \{(v,w)|v \sim_{u} w \text{ and } v,w \in X^{s}(P)\}$$

$$G^{h}(X,\varphi) = \{(v,w)|v \sim_{u} w \text{ and } v \sim_{s} w\}.$$

- These are called the stable, unstable and homoclinic groupoids of a Smale space.
- These groupoids are independent of *P*, up to groupoid equivalence (meaning the *C**-algebras will be strongly Morita equivalent).

Stable groupoid topology

- Suppose $v \sim_s w$ and $v, w \in X^u(Q)$.
- There exists N such that $d(\varphi^N(v), \varphi^N(w)) < \varepsilon_X/2$.
- Choose $\delta > 0$ small enough so that the diameter of $\varphi^N(X^u(w, \delta))$ and $\varphi^N(X^u(v, \delta))$ is smaller than $\varepsilon_X/2$.

Then there is a local homeomorphism

$$h^{s}: X^{u}(w, \delta) \to X^{u}(v, \delta)$$

which is defined pictorially on the next page.

C^* -algebras

- $C_c(G^s(X, \varphi, P))$ is a complex linear space with
 - Convolution product

$$ab(x,y) = \sum_{(x,z)\in G^s(X,\varphi,P)} a(x,z)b(z,y)$$

Involution

$$a^*(x,y) = \overline{a(y,x)}.$$

• Represent $C_c(G^s(X, \varphi, P))$ as bounded operators on $\ell^2(X^h(P))$ via

$$(a\xi)(x) = \sum_{(x,y)\in G^s(X,\varphi,P)} a(x,y)\xi(y).$$

Suppose *a* is a function in $C_c(G^s(X, \varphi, P))$ with support on the basic set $V^s(v, w, h^s, \delta)$.

Let $\{\delta_x \mid x \in X^h(P)\}$ denote the usual basis of Dirac delta functions in $\mathcal{H} = \ell^2(X^h(P))$.

Then,

$$\pi(a)\delta_x = a(h^s(x), x)\delta_{h^s(x)}$$

if $x \in X^u(w, \delta)$ and zero otherwise.

 Definition: The stable C*-algebra S(X, φ, P) is defined to be the completion of C_c(G^s(X, φ, P)) in the operator norm of H. Moreover, S(X, φ, P) is independent of P up to Morita equivalence, so we'll denote it by S (in fact, they are independent up to isomorphism in the mixing case due to papers by Strung - Deeley and Deeley - Goffeng - Yashinski).

 Definition: The unstable C*-algebra U(X, φ, P) is defined to be the completion of C_c(G^u(X, φ, P)) in the operator norm of H and is independent of P up to Morita equivalence, so we'll denote it by U. (same).

 Definition: The homoclinic C*-algebra H(X, φ) is defined to be the completion of C_c(G^h(X, φ)) in the operator norm of H and we denote it by H. (same).

Ruelle Algebras (Putnam)

 $\bullet\,$ The homeomorphism φ induces an inner automorphism on the algebras by

$$\alpha(a)(x,y) = a(\varphi^{-1}(x),\varphi^{-1}(y))$$

• The crossed product

$$R^{s} := \mathcal{S} \rtimes_{\alpha} \mathbb{Z},$$

is called the stable Ruelle algebra.

• Similarly, the unstable and homoclinic Ruelle algebras are the crossed products

 $R^u := \mathcal{U} \rtimes_{\alpha} \mathbb{Z}$ and $R^h := H \rtimes_{\alpha} \mathbb{Z}$.

Theorem (Putnam and Spielberg 1999)

Suppose (X, φ) is irreducible. Then R^s and R^u are separable, simple, stable, nuclear, purely infinite, and satisfy the UCT. Moreover, they're independent of P up to strong Morita equivalence.

Wieler-Smale spaces

Definition (Wieler 2014)

Suppose V is a compact metric space and $g: V \to V$ is a continuous surjection. We say (V,g) satisfies Wieler's axioms if there exists constants $\beta > 0$, $K \in \mathbb{N}_+$, and $\gamma \in (0,1)$ such that the following hold:

Axiom 1 If $v, w \in V$ satisfy $d(v, w) < \beta$, then

$$d(g^{K}(v),g^{K}(w)) \leq \gamma^{K}d(g^{2K}(v),g^{2K}(w)).$$

Axiom 2 For all $v \in V$ and $\varepsilon \in (0, \beta]$

 $g^{\mathcal{K}}(B(g^{\mathcal{K}}(v),\varepsilon)) \subseteq g^{2\mathcal{K}}(B(v,\gamma\varepsilon)).$

Wieler-Smale spaces

• Suppose V is a compact metric space and $g: V \to V$ is a continuous surjection. We define

$$X_{V} := \{ (v_{i})_{i \in \mathbb{N}} \in V^{\mathbb{N}} : v_{i} = g(v_{i+1}) \}$$
(1)

along with a map $\varphi_g: X_V o X_V$ given by

$$\varphi_g(v_0, v_1, \ldots) := (g(v_0), v_0, v_1, \ldots).$$

$$(2)$$

Theorem (Wieler 2014)

- (A) Suppose (V,g) satisfies Wieler's axioms, then (X_V, φ_g) is an irreducible Smale space with totally disconnected stable sets.
- (B) Suppose (X, φ) is an irreducible Smale space with totally disconnected stable sets. Then there exists a pair (V, g) satisfying Wieler's axioms such that (X, φ) is conjugate to (X_V, φ_g) .

n-solenoids

- Consider $S^1 := \mathbb{R}/\mathbb{Z}$ and $g(x) = nx \pmod{1}$.
- We will abuse notation and write nx for nx (mod 1).
- Then (S¹, g) satisfies Wieler's axioms, and Wieler's Theorem gives the Smale space

$$X_{S^1} = \{ (x_0, x_1, x_2, \dots) \mid x_i \in [0, 1), x_i - nx_{i+1} \in \mathbb{Z} \}$$

with dynamics

$$\varphi_g(x_0, x_1, x_2, \dots) = (nx_0, x_0, x_1, x_2, \dots).$$

For d(x, y) < 1/2 let t = x₀ − y₀. Then the bracket map is defined by

$$[x, y] := (y_0 + t, y_1 + n^{-1}t, y_2 + n^{-2}t, \dots).$$

A geometric picture of a 2-solenoid

Picture borrowed from:

G. Conner, M. Meilstrup, and D. Repovš, *The geometry and fundamental groups of solenoid complements*, ArXiv: 1212.0128

References:

- R.J. Deeley, M. Goffeng and A. Yashinski, *Smale space C*-algebras have nonzero projections*, Proc. Amer. Math. Soc. **148** (2020), 1625–1639.
- R.J. Deeley and K.R. Strung, Nuclear dimension and classification of C*-algebras associated to Smale spaces, Trans. Amer. Math. Soc. 370 (2018), 3467–3485.
- I.F. Putnam, C*-Algebras from Smale Spaces, Canad. J. Math. 48 (1996), 175-195.
- 4. I.F. Putnam. *A Homology Theory for Smale Spaces*, Memoirs of the A.M.S. 232, Providence, 2014.
- I.F. Putnam and J. Spielberg *The Structure of C*-Algebras* Associated with Hyperbolic Dynamical Systems, J. Func. Analysis 163 (1999), 279-299.
- S. Smale, Differentiable Dynamical Systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.
- S. Wieler, Smale spaces via inverse limits, Ergodic Th. Dynam. Sys. 34 (2014), 2066–2092.