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Intro

A Smale space consists of a compact metric space and a
homeomorphism (X , ϕ) with canonical expanding and contracting
directions.

Smale spaces were introduced by David Ruelle and include:

Shifts of finite type (Smale’s horseshoe),

Hyperbolic toral automorphisms,

Solenoids (Bob Williams and Susie Weiler):

Dynamical systems associated with certain substitution tiling
spaces (Anderson and Putnam),
Solenoids associated to the limit space of a contracting
self-similar group (Nekrashevych),

the basic sets of Smale’s Axiom A systems (Ruelle).



A Hyperbolic Toral Automorphism

Let A be the matrix

A =

(
1 1
1 0

)
.

A : T2 → T2 is a homeomorphism, where T2 = R2/Z2.

Let γ = 1+
√
5

2 be the golden mean.

The eigenvalues for A are γ > 1 and −γ−1 corresponding with
eigenvectors

vu =

(
γ
1

)
and vs =

(
1
−γ

)
.
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Hyperbolic Toral Automorphism



Consider the dynamical system (T2,A) and let x , y be in T2.
We aim to define equivalence relations with respect to the
homeomorphism A.

Stable equivalence:

x ∼s y ⇐⇒ lim
n→∞

d(An(x),An(y)) = 0.

Let X s(x) denote the stable equivalence class of x and observe:

X s(x) = {x + tvs(modZ2) | t ∈ R}.

For 0 < ε < 1/2, define the local stable equivalence class of x :

X s(x , ε) = {x + tvs(modZ2) | |t| < ε}.



Similarly, unstable equivalence:

x ∼u y ⇐⇒ lim
n→∞

d(A−n(x),A−n(y)) = 0.

Let X u(x) denote the unstable equivalence class of x and
observe:

X u(x) = {x + tvu(modZ2) | t ∈ R}.
For 0 < ε < 1/2, define the local unstable equivalence class of
x :

X u(x , ε) = {x + tvu(modZ2) | |t| < ε}.
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Local and global equivalence classes of x



Homoclinic equivalence:

x ∼h y ⇐⇒ x ∼s y and x ∼u y .

Let X h(x) denote the homoclinic equivalence class of x and
observe:

X h(x) = X s(x) ∩ X u(x).
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The points where the dashed lines intersect are homoclinic to x



General definition of a Smale space

A Smale space is a compact metric space (X , d) with a
homeomorphism ϕ : X → X such that there exist constants
εX > 0, λ > 1 and bracket map

(x , y) ∈ X , d(x , y) ≤ εX 7→ [x , y ] ∈ X

satisfying:

B1 [x , x ] = x ,

B2 [x , [y , z ]] = [x , z ],

B3 [[x , y ], z ] = [x , z ],

B4 ϕ[x , y ] = [ϕ(x), ϕ(y)];

for any x , y , z in X , where both sides of the equality are defined.



For each x in X and 0 < ε ≤ εX , define sets

X s(x , ε) = {y ∈ X | d(x , y) ≤ ε, [y , x ] = x},
X u(x , ε) = {y ∈ X | d(x , y) ≤ ε, [x , y ] = x}.

The two final axioms are

C1 For y , z in X s(x , εX ), we have

d(ϕ(y), ϕ(z)) ≤ λ−1d(y , z),

C2 For y , z in X u(x , εX ), we have

d(ϕ−1(y), ϕ−1(z)) ≤ λ−1d(y , z).
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The bracket map



Note that if a bracket map exists on (X , ϕ) then it’s unique.

We typically study Smale spaces with topological recurrence
conditions. Let (X , ϕ) be a dynamical system, then:

A point x in X is called non-wandering if for every open set U
containing x , there is a positive integer N such that
ϕN(U) ∩ U is non-empty. We say that (X , ϕ) is
non-wandering if every point of X is non-wandering.

(X , ϕ) is said to be irreducible if, for every (ordered) pair of
non-empty sets U, V , there is a positive integer N such that
ϕN(U) ∩ V is non-empty.

(X , ϕ) is said to be mixing if, for every (ordered) pair of
non-empty sets U, V , there is a positive integer N such that
ϕn(U) ∩ V is non-empty for all n ≥ N.



Smale’s Decomposition Theorem

Theorem (Smale’s Decomposition Theorem)

Let (X , ϕ) be a Smale space.

If (X , ϕ) is non-wandering, then there exists a partition of X
into a finite number of clopen, pairwise disjoint subsets, each
of which is invariant under ϕ and so that the restriction of ϕ
to each is irreducible. Moreover, this decomposition is unique.

If (X , ϕ) is irreducible, then then there exists a partition of X
into a finite number of clopen, pairwise disjoint subsets which
are cyclicly permuted by ϕ. If the number of these sets is N,
then ϕN (which leaves each invariant) is mixing on each
element of the partition.



Markov partitions and Bowen’s Theorem

Theorem (Bowen 1970)

Suppose (X , ϕ) is an irreducible Smale space. Then there is a shift
of finite type (Σ, σ) and a factor map π : (Σ, σ)→ (X , ϕ) such
that π is finite-to-one and one-to-one on a dense Gδ subset of Σ.

A non-empty subset R ⊂ X is called a rectangle if diam(R) ≤ εX
and [x , y ] ∈ R, for any x , y ∈ R.

Bowen’s proof showed that irreducible Smale spaces admit Markov
partitions of arbitrarily small diameter; that is, the space X can be
partitioned into closed rectangles that respect the dynamical
structure and overlap only on their boundaries.



Markov partitions and Bowen’s Theorem
Encoding the point (1/2, 1/2) ∈ T2 as a sequence in (Σ3, σ):

◦
(1/2, 1/2)

.2



Markov partitions and Bowen’s Theorem
Encoding the point (1/2, 1/2) ∈ T2 as a sequence in (Σ3, σ):

◦
(0, 1/2)

.21



Markov partitions and Bowen’s Theorem
Encoding the point (1/2, 1/2) ∈ T2 as a sequence in (Σ3, σ):

◦(1/2, 0)

.213



Markov partitions and Bowen’s Theorem
Encoding the point (1/2, 1/2) ∈ T2 as a sequence in (Σ3, σ):

◦
(1/2, 1/2)

...213213213.213213213...



Markov partitions and Bowen’s Theorem

For a Smale space (X , ϕ), suppose R1 is a Markov partition with
sufficiently small diameter.

The Markov property implies that we can find Markov partitions
Rn, for n ≥ 2, where each Rn refines Rn−1 and diam(Rn) goes to
zero.

The sequence (Rn)n∈N is the main ingredient for deriving Bowen’s
factor map.



Groupoids (Ruelle, Putnam-Spielberg)

Define global equivalence relations as follows:

X s(x) = {y ∈ X | d(ϕn(x), ϕn(y))→ 0 as n→∞},
X u(x) = {y ∈ X | d(ϕ−n(x), ϕ−n(y))→ 0 as n→∞}.

Let (X , ϕ) be a Smale space and let P be a periodic orbit. Let

X s(P) =
⋃

p∈P
X s(p)

X u(P) =
⋃

p∈P
X u(p)

X h(P) = X s(P) ∩ X u(P).

Under mild hypotheses, X h(P) is countable and dense.
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Hyperbolic Toral Automorphism: X h({(0, 0)})



Stable and unstable equivalence leads to groupoids on
(X , d , ϕ):

G s(X , ϕ,P) = {(v ,w)|v ∼s w and v ,w ∈ X u(P)}
Gu(X , ϕ,P) = {(v ,w)|v ∼u w and v ,w ∈ X s(P)}

Gh(X , ϕ) = {(v ,w)|v ∼u w and v ∼s w}.

These are called the stable, unstable and homoclinic
groupoids of a Smale space.

These groupoids are independent of P, up to groupoid
equivalence (meaning the C ∗-algebras will be strongly Morita
equivalent).



Stable groupoid topology

Suppose v ∼s w and v ,w ∈ X u(Q).

There exists N such that d(ϕN(v), ϕN(w)) < εX/2.

Choose δ > 0 small enough so that the diameter of
ϕN(X u(w , δ)) and ϕN(X u(v , δ)) is smaller than εX/2.

Then there is a local homeomorphism

hs : X u(w , δ)→ X u(v , δ)

which is defined pictorially on the next page.
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The local homeomorphism hs : X u(w , δ)→ X u(v , εX )



C ∗-algebras

Cc(G s(X , ϕ,P)) is a complex linear space with

Convolution product

ab(x , y) =
∑

(x,z)∈G s (X ,ϕ,P)

a(x , z)b(z , y)

Involution
a∗(x , y) = a(y , x).

Represent Cc(G s(X , ϕ,P)) as bounded operators on
`2(X h(P)) via

(aξ)(x) =
∑

(x ,y)∈G s(X ,ϕ,P)

a(x , y)ξ(y).



Suppose a is a function in Cc(G s(X , ϕ,P)) with support on the
basic set V s(v ,w , hs , δ) .

Let {δx | x ∈ X h(P)} denote the usual basis of Dirac delta
functions in H = `2(X h(P)).

Then,
π(a)δx = a(hs(x), x)δhs(x)

if x ∈ X u(w , δ) and zero otherwise.



(0, 0)

(0, 1)

(1, 0)

(1, 1)

X u(w , δ)

X u(v , εX )

hs

w

v

x

hs(x)

The local homeomorphism hs : X u(w , δ)→ X u(v , εX )



Definition: The stable C ∗-algebra S(X , ϕ,P) is defined to be
the completion of Cc(G s(X , ϕ,P)) in the operator norm of H.
Moreover, S(X , ϕ,P) is independent of P up to Morita
equivalence, so we’ll denote it by S (in fact, they are
independent up to isomorphism in the mixing case due to
papers by Strung - Deeley and Deeley - Goffeng - Yashinski).

Definition: The unstable C ∗-algebra U(X , ϕ,P) is defined to
be the completion of Cc(Gu(X , ϕ,P)) in the operator norm of
H and is independent of P up to Morita equivalence, so we’ll
denote it by U . (same).

Definition: The homoclinic C ∗-algebra H(X , ϕ) is defined to
be the completion of Cc(Gh(X , ϕ)) in the operator norm of H
and we denote it by H. (same).



Ruelle Algebras (Putnam)

The homeomorphism ϕ induces an inner automorphism on the
algebras by

α(a)(x , y) = a(ϕ−1(x), ϕ−1(y))

The crossed product

Rs := S oα Z,

is called the stable Ruelle algebra.

Similarly, the unstable and homoclinic Ruelle algebras are the
crossed products

Ru := U oα Z and Rh := H oα Z.

Theorem (Putnam and Spielberg 1999)

Suppose (X , ϕ) is irreducible. Then Rs and Ru are separable,
simple, stable, nuclear, purely infinite, and satisfy the UCT.
Moreover, they’re independent of P up to strong Morita
equivalence.



Wieler-Smale spaces

Definition (Wieler 2014)

Suppose V is a compact metric space and g : V → V is a
continuous surjection. We say (V , g) satisfies Wieler’s axioms if
there exists constants β > 0, K ∈ N+, and γ ∈ (0, 1) such that the
following hold:

Axiom 1 If v ,w ∈ V satisfy d(v ,w) < β, then

d(gK (v), gK (w)) ≤ γKd(g2K (v), g2K (w)).

Axiom 2 For all v ∈ V and ε ∈ (0, β]

gK (B(gK (v), ε)) ⊆ g2K (B(v , γε)).



Wieler-Smale spaces

Suppose V is a compact metric space and g : V → V is a
continuous surjection. We define

XV := {(vi )i∈N ∈ V N : vi = g(vi+1)} (1)

along with a map ϕg : XV → XV given by

ϕg (v0, v1, . . .) := (g(v0), v0, v1, . . .). (2)

Theorem (Wieler 2014)

(A) Suppose (V , g) satisfies Wieler’s axioms, then (XV , ϕg ) is an
irreducible Smale space with totally disconnected stable sets.

(B) Suppose (X , ϕ) is an irreducible Smale space with totally
disconnected stable sets. Then there exists a pair (V , g)
satisfying Wieler’s axioms such that (X , ϕ) is conjugate to
(XV , ϕg ).



n-solenoids

Consider S1 := R/Z and g(x) = nx (mod 1).

We will abuse notation and write nx for nx (mod 1).

Then (S1, g) satisfies Wieler’s axioms, and Wieler’s Theorem
gives the Smale space

XS1 = {(x0, x1, x2, . . . ) | xi ∈ [0, 1), xi − nxi+1 ∈ Z}

with dynamics

ϕg (x0, x1, x2, . . . ) = (nx0, x0, x1, x2, . . . ).

For d(x , y) < 1/2 let t = x0 − y0. Then the bracket map is
defined by

[x , y ] := (y0 + t, y1 + n−1t, y2 + n−2t, . . . ).



A geometric picture of a 2-solenoid
THE GEOMETRY AND FUNDAMENTAL GROUPS OF SOLENOID COMPLEMENTS 3

Figure 1. Embedding the dyadic solenoid in S3. Begin with a standard unknotted
solid torus T0 (top left). Then embed a second torus T1 inside T0, wrapping around
the longitude of T0 twice (top right). A third torus T2 is shown wrapping twice
inside T1 (bottom left). The solenoid is the infinite intersection of such nested tori
(bottom right).

structure “at infinity,” and are not the interior of a compact manifold with boundary. We will
discuss the fundamental groups of such manifolds, which will depend on the particular embedding
chosen for the solenoid. Recall that we are starting with an embedding of the solenoid as a nested
intersection of solid tori, each of which is a closed braid in the previous torus:

T0 � T1 � T2 � . . . ; ⌃ =
\

Ti.

This gives us that the solenoid complement is an increasing union of torus complements:

(S3 � T0) ⇢ (S3 � T1) ⇢ (S3 � T2) ⇢ . . . ; ⌃c =
[

(S3 � Ti).

Picture borrowed from:
G. Conner, M. Meilstrup, and D. Repovs̃, The geometry and
fundamental groups of solenoid complements, ArXiv: 1212.0128
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