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Abstract We obtain a presentation of certain affineq-Schur algebras in terms of
generators and relations. The presentation is obtained by adding more relations to
the usual presentation of the quantized enveloping algebraof type affinegln. Our
results extend and rely on the corresponding result for theq-Schur algebra of the
symmetric group, which were proved by the first author and Giaquinto.
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Introduction

LetV ′ be a vector space of finite dimensionn. On the tensor space(V ′)⊗r we have
natural commuting actions of the general linear groupGL(V ′) and the symmetric
groupSr . Schur observed that the centralizer algebra of each actionequals the
image of the other action in End((V ′)⊗r), in characteristic zero, and Schur and
Weyl used this observation to transfer information about the representations ofSr
to information about the representations ofGL(V ′). That this Schur–Weyl dual-
ity holds in arbitrary characteristic was first observed in [4], although a special
case was already used in [2]. In recent years, there have appeared various applica-
tions of the Schur–Weyl duality viewpoint to modular representations. The Schur
algebrasS(n, r) first defined in [9] play a fundamental role in such interactions.

Jimbo [13] and (independently) Dipper and James [6] observed that the ten-
sor space(V ′)⊗r has aq-analogue in which the mutually centralizing actions of
GL(V ′) andSr become mutually centralizing actions of a quantized enveloping
algebraU(gln) and of the Iwahori-Hecke algebraH (Sr) corresponding toSr . In
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this context, the ordinary Schur algebraS(n, r) is replaced by theq-Schur algebra
Sq(n, r). Dipper and James also showed that theq-Schur algebras determine the
representations of finite general linear groups in non-defining characteristic.

An affine version of Schur–Weyl duality was first described in[3]. A different
version, in which the vector spaceV ′ is replaced by an infinite dimensional vector
spaceV, is given in [11], and we follow the latter approach here. In the affine (type
A) setting, the mutually commuting actions are of an affine quantized enveloping
algebraU(ĝln) and an extended affine Hecke algebraH (Ŵ) corresponding to
an extended affine Weyl group̂W containing the affine Weyl groupW of type
Âr−1. The affineq-Schur algebrâSq(n, r) in this context, which is also infinite
dimensional, was first studied in [11], [17], and [20].

Recently, a new approach to Schur algebras or theirq-analogues was given in
[7], where it was shown that they may be defined by generators and relations in a
manner compatible with the usual defining presentation of the enveloping algebra
or its corresponding quantized enveloping algebra. The purpose of this paper is to
extend that result to the affine case — that is, to describe theaffineq-Schur algebra
Ŝq(n, r) by generators and relations compatible with the defining presentation of

U(ĝln). This result is formulated in Theorem 1.6.1, under the assumption thatn >
r. An equivalent result, which describes the affineq-Schur algebra as a quotient of
Lusztig’s modified form of the quantized enveloping algebra, is given in Theorem
2.6.1. These results depend on a different presentation, also valid forn > r, of
theq-Schur algebra given in [11, Proposition 2.5.1]. A different approach to the
results of this paper seems to be indicated for the casen≤ r.

The organization of the paper is as follows. In Section 1 we give necessary
background information, and formulate our main result. In Section 2 we give the
proof of Theorem 1.6.1, and we also give, in Section 2.6, the alternative presenta-
tion mentioned above. Finally, in Section 3 we outline the analogous results in the
classical case, when the quantum parameter is specialized to 1.

After we submitted this paper, McGerty informed us that he has independently
proved Theorem 2.6.1 using different methods; see [19].

1 Preliminaries and statement of main results

Our main result, stated in§1.6, is a presentation by generators and relations of the
affineq-Schur algebra. In order to put this result in context, we review some of the
definitions of the algebra that have been given in the literature.

1.1 Affine Weyl groups of typeA

The affine Weyl group will play a key role, both in our definitions and our methods
of proof, so we define it first.

The Weyl group we consider in this paper is that of typeÂr−1, where we intend
r ≥ 3. This corresponds to the Dynkin diagram in Figure 1.1.1.

The number of vertices in the graph in Figure 1.1.1 isr, as the top vertex
(numberedr) is regarded as an extra relative to the remainder of the graph, which
is a Coxeter graph of typeAr−1.
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Fig. 1.1.1 Dynkin diagram of typêAr−1

We associate a Weyl group,W =W(Âr−1), to this Dynkin diagram in the usual
way (as in [12,§2.1]). This associates to nodei of the graph a generating involution
si of W, wheresisj = sjsi if i and j are not connected in the graph, and

sisjsi = sjsisj

if i and j are connected in the graph. Fort ∈ Z, it is convenient to denote byt
the congruence class oft modulor, taking values in the set{1,2, . . . , r}. For the
purposes of this paper, it is helpful to think of the groupW as follows, based on
a result of Lusztig [15]. (Note that we write maps on the rightwhen dealing with
permutations.)

Proposition 1.1.2 There exists a group isomorphism from W to the set of permu-
tations ofZ satisfying the following conditions:

(i + r)w= (i)w+ r (a)
r

∑
t=1

(t)w=
r

∑
t=1

t (b)

such that si is mapped to the permutation

t 7→





t if t 6= i, i +1,
t −1 if t = i +1,
t +1 if t = i,

for all t ∈ Z.

For reasons relating to weight spaces which will become clear later, we con-
sider a larger group̂W of permutations ofZ.

Definition 1.1.3 Let ρ be the permutation ofZ taking t to t + 1 for all t. Then
the groupŴ is defined to be the subgroup of permutations ofZ generated by the
groupW andρ.

As will become clear later, the point ofρ is that conjugation byρ will corre-
spond to a graph automorphism of the Dynkin diagram given by rotation by one
place.

Proposition 1.1.4 (i) There exists a group isomorphism from̂W to the set of per-
mutations ofZ satisfying the following conditions:

(i + r)w= (i)w+ r (a)
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r

∑
t=1

(t)w≡
r

∑
t=1

t modr. (b)

(ii) Any element of̂W is uniquely expressible in the formρzw for z∈Z and w∈W.
Conversely, any element of this form is an element ofŴ .
(iii) Let S∼= Sr be the subgroup of̂W generated by

{s1,s2, . . . ,sr−1}.

Let Z be the subgroup of̂W consisting of all permutations z satisfying

(t)z≡ t modr

for all t. ThenZr ∼= Z, Z is normal inŴ , andŴ is the semidirect product of S and
Z.

Proof The three parts are proved in [11, Proposition 1.1.3, Corollary 1.1.4, Propo-
sition 1.1.5] respectively. ⊓⊔

It is convenient to extend the usual notion of the length of anelement of a
Coxeter group to the group̂W in the following way.

Definition 1.1.5 Forw∈W the lengthℓ(w) of w is the length of a word of minimal
length in the group generatorssi of W which is equal tow. The length,ℓ(w′), of a
typical elementw′ = ρzw of Ŵ (wherez∈ Z andw∈W) is defined to beℓ(w).

When the affine Weyl group is thought of in the above way, the familiar no-
tions of length and distinguished coset representatives may be adapted from the
corresponding notions for Coxeter groups.

Definition 1.1.6 Let Π be the set of subsets ofS= {s1,s2, . . . ,sr}, excludingS
itself. For eachπ ∈ Π , we define the subgroup̂Wπ of Ŵ to be that generated by
{si ∈ π}. (Such a subgroup is called a parabolic subgroup.) We will sometimes
write Wπ for Ŵπ to emphasize that it is a subgroup ofW. Let Π ′ be the set of
elements ofΠ that omit the generatorsr .

All the subgroupŝWπ are subgroups ofW, and are parabolic subgroups in the
usual sense of Coxeter groups. Furthermore, each suchŴπ is isomorphic to a direct
product of Coxeter groups of typeA (i.e., finite symmetric groups) corresponding
to the connected components of the Dynkin diagram obtained after omitting the
elementssi that do not occur inπ. We will appeal to these facts freely in the sequel.

Definition 1.1.7 Let π ∈ Π . The subsetDπ of Ŵ is the set of those elements such
that for anyw∈ Ŵπ andd ∈ Dπ ,

ℓ(wd) = ℓ(w)+ ℓ(d).

We callDπ the set of distinguished right coset representatives ofŴπ in Ŵ.
The subsetD−1

π is called the set of distinguished left coset representatives of
Ŵπ in Ŵ; elementsd ∈ D−1

π have the property thatℓ(dw) = ℓ(d)+ ℓ(w) for any
w∈ Ŵπ .
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Proposition 1.1.8 (i) Let π ∈ Π and w∈ Ŵ. Then w= wπ wπ for a unique wπ ∈
Ŵπ and wπ ∈ Dπ .
(ii) Letπ ′ ∈Π and w∈Ŵ . Then w= wπ ′

wπ ′ for a unique wπ ′ ∈Ŵπ ′ and wπ ′ ∈Dπ ′ .
(iii) Let π1,π2 ∈ Π . The setDπ1,π2 := Dπ1 ∩D−1

π2
is an irredundantly described

set of doublêWπ1–Ŵπ2-coset representatives, each of minimal length in its double
coset.

Proof See [11, Propositions 1.4.4, 1.4.5]. ⊓⊔

1.2 Affine Hecke algebras of typeA

We now define the extended affine Hecke algebraH = H (Ŵ) of type A. The
Hecke algebra is aq-analogue of the group algebra ofŴ, and is related tôW in
the same way as the Hecke algebraH (Sr) of typeA is related to the symmetric
groupSr . In particular, one can recover the group algebra ofŴ by replacing the
parameterq occurring in the definition ofH (Ŵ) by 1.

Definition 1.2.1 The affine Hecke algebraH = H (Ŵ) overZ[q,q−1] is the as-
sociative, unital algebra with algebra generators

{Ts1, . . . ,Tsr}∪{Tρ ,T−1
ρ }

and relations

T2
s = (q−1)Ts+q, (1)

TsTt = TtTs if sandt are not adjacent in the Dynkin diagram, (2)

TsTtTs = TtTsTt if s andt are adjacent in the Dynkin diagram, (3)

TρTsi+1T−1
ρ = Tsi . (4)

In relation (4), we interpretsr+1 to means1.

The algebraH has a better known presentation, known as the Bernstein pre-
sentation, but this is not convenient for our purposes. The equivalence of the two
presentations is well known, and a proof may be found, for example, in [11, Theo-
rem 4.2.5]. However, it will be convenient to have the following modified version
of the presentation in Definition 1.2.1.

Lemma 1.2.2 The affine Hecke algebraH = H (Ŵ) overZ[q,q−1] is the asso-
ciative, unital algebra with algebra generators

{Ts1, . . . ,Tsr−1}∪{Tρ ,T−1
ρ }

and relations

T2
si

= (q−1)Tsi +q, (1′)

Tsi Tsj = Tsj Tsi if |i − j |> 1, (2′)

Tsi Tsj Tsi = Tsj Tsi Tsj if |i − j |= 1, (3′)
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TρTsi+1T−1
ρ = Tsi if 1≤ i < r −1, (4′)

T r
ρ Tsi T

−r
ρ = Tsi if 1≤ i ≤ r −1, (5′)

Proof It is clear that relations (1′)–(5′) are consequences of relations (1)–(4). For
the converse direction, we defineTsr := TρTs1T−1

ρ ; the remaining cases of relations
(1)–(4) may then be obtained from relations (1′)–(5′) by conjugating byTρ or by
T−1

ρ . ⊓⊔

Definition 1.2.3 Let w∈W. The elementTw of H (W) is defined as

Tsi1
· · ·Tsim

,

wheresi1 · · ·sim is a reduced expression forw (i.e., one withm minimal). (This is
well-defined by standard properties of Coxeter groups.)

If w′ ∈ Ŵ is of formρzw for w∈W, we denote byTw′ the elementTz
ρ Tw. (This

is well-defined by Proposition 1.1.4 (ii).)

Proposition 1.2.4 (i) A freeZ[q,q−1]-basis forH is given by the set{Tw : w ∈
Ŵ}.
(ii) As aZ[q,q−1]-algebra,H is generated by Ts1, Tρ and T−1

ρ .

Proof See [11, Proposition 1.2.3, Lemma 1.2.4]. ⊓⊔

1.3 The affineq-Schur algebra as an endomorphism algebra

We first present the definition of the affineq-Schur algebra as given in [11,§2].

Definition 1.3.1 A weight is a compositionλ = (λ1,λ2, . . . ,λn) of r into n pieces,
that is, a finite sequence of nonnegative integers whose sum is r. (There is no
monotonicity assumption on the sequence.) We denote the setof weights byΛ (n, r).

The r-tupleℓ(λ) of a weightλ is the weakly increasing sequence of integers
where there areλi occurrences of the entryi.

The Young subgroupSλ ⊆ Sr ⊆W ⊆ Ŵ is the subgroup of permutations of
the set{1,2, . . . , r} that leaves invariant the following sets of integers:

{1,2, . . . ,λ1},{λ1 +1,λ1 +2, . . . ,λ1 +λ2},{λ1 +λ2 +1, . . .}, . . . .

The weightω is given by then-tuple

(1,1, . . . ,1︸ ︷︷ ︸
r

,0,0, . . . ,0︸ ︷︷ ︸
n−r

).

Remark 1.3.2 The Young subgroupSλ ⊆ Sr can be thought of as a group̂Wλ
for someλ ∈ Π ′. Note, however, that different compositionsλ can give rise to
canonically isomorphic groups. Also note that we requiren≥ r for ω to exist.
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Definition 1.3.3 Let λ ∈ Π . For t ∈ Z, the parabolic subgroup̂Wλ+t is the one
generated by those elementssi+t wherei is such thatsi lies inŴλ . We also use the
notationDλ+t with the obvious meaning.

The elementxλ+t ∈ H is defined as

xλ+t := ∑
w∈Ŵλ+t

Tw.

We will write xλ for xλ+0.

Definition 1.3.4 The affineq-Schur algebrâSq(n, r) overZ[q,q−1] is defined by

Ŝq(n, r) := EndH


 ⊕

λ∈Λ(n,r)

xλ H


 ,

whereH = H (Ŵ).

There is a basis for̂Sq(n, r) similar to Dipper and James’ basis for the ordinary
q-Schur algebra.

Definition 1.3.5 Let d ∈ Ŵ be an element ofDλ ,µ . Write d = ρzc (as in Proposi-
tion 1.1.4 (ii)) withc∈W. Then the element

φd
λ ,µ ∈ Hom(xµH (Ŵ),xλ H (Ŵ))

is defined as

φd
λ ,µ(xµ) := ∑

d′∈Dν∩Wµ

xλ Tz
ρ Tcd′

= ∑
d′∈Dν∩Wµ

Tz
ρ xλ+zTcd′ = ∑

w∈Wλ+zcWµ

Tz
ρ Tw = ∑

w∈Wλ dWµ

Tw

whereν is the composition ofn corresponding to the standard Young subgroup

d−1Wλ+zd∩Wµ

of W.

Theorem 1.3.6 (i) A freeZ[q,q−1]-basis forŜq(n, r) is given by the set

{φd
λ ,µ : λ ,µ ∈ Λ (n, r), d ∈ Dλ ,µ}.

(ii) The set of basis elements

{φd
λ ,µ : λ ,µ ∈ Λ (n, r),d ∈ Sr ∩Dλ ,µ}

spans a subalgebra of̂Sq(n, r) canonically isomorphic to the q-Schur algebra
Sq(n, r).
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(iii) The set of basis elements

{φd
ω,ω : d ∈ Ŵ}

spans a subalgebra canonically isomorphic to the Hecke algebra H (Ŵ), where
φd

ω,ω is identified with Td.

Proof See [11, Theorem 2.2.4] for part (i), and [11, Proposition 2.2.5] for parts
(ii) and (iii). ⊓⊔

Note again that parts (ii) and (iii) of Theorem 1.3.6 only apply if n≥ r.

1.4 Quantum groups and tensor space

The affineq-Schur algebras are closely related to certain quantum groups (Hopf
algebras). The following Hopf algebra is crucial for our purposes.

Definition 1.4.1 The associative, unital algebraU(gln) overQ(v) is given by gen-
erators

Ei ,Fi (1≤ i ≤ n−1); Ki ,K
−1
i (1≤ i ≤ n)

subject to the following relations:

KiK j = K jKi , (Q1)

KiK
−1
i = K−1

i Ki = 1, (Q2)

KiE j = vε+(i, j)E jKi , (Q3)

KiFj = vε−(i, j)FjKi , (Q4)

EiFj −FjEi = δi j
KiK

−1
i+1−K−1

i Ki+1

v−v−1 , (Q5)

EiE j = E jEi if i and j are not adjacent, (Q6)

FiFj = FjFi if i and j are not adjacent, (Q7)

E2
i E j − (v+v−1)EiE jEi +E jE

2
i = 0 if i and j are adjacent, (Q8)

F2
j Fi − (v+v−1)FjFiFj +FiF

2
j = 0 if i and j are adjacent. (Q9)

Here, we regardi and j as “adjacent” ifi and j index adjacent nodes in the Dynkin
diagram of typeAn−1. In the relations,i and j vary over all values of the indices
for which the relation is defined. Also,

ε+(i, j) :=





1 if j = i;
−1 if j = i −1;
0 otherwise;

and

ε−(i, j) :=






1 if j = i −1;
−1 if j = i;
0 otherwise
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where we writea for a ∈ Z to denote the residue class ofa in the residue class
ring Z/nZ. The residue class notation has no effect in the above definition, where
indices are restricted to the range 1, . . . ,n−1. However, the notation is important
in the next two definitions.

The following Hopf algebra is a quantized affine enveloping algebra associated
with the affine Lie algebrâgln.

Definition 1.4.2 The associative, unital algebraU(ĝln) overQ(v) is given by gen-
erators

Ei ,Fi ,Ki ,K
−1
i

(where 1≤ i ≤ n) subject to relations (Q1) to (Q9) of Definition 1.4.1 (reading
indices modulon).

In this definition, the notion of “adjacent” in relations (Q1)–(Q9) must now be
interpreted in the Dynkin diagram of typêAn−1. More precisely,i and j are to be
regarded as “adjacent” ifi and j index adjacent nodes in the Dynkin diagram of
typeÂn−1. Note thati, j index adjacent nodes if and only ifi − j ≡±1 (mod n).

In [11], a larger Hopf algebra is considered. It is an extended version of the
quantized affine algebraU(ĝln) considered in Definition 1.4.2.

Definition 1.4.3 The associative, unital algebrâU(ĝln) overQ(v) is given by gen-
erators

Ei ,Fi,Ki ,K
−1
i ,R,R−1

(where 1≤ i ≤ n) subject to relations (Q1) to (Q9) of Definition 1.4.1 (reading
indices modulon), together with the relations

RR−1 = R−1R= 1, (Q10)

R−1Ki+1R= Ki , (Q11)

R−1K−1
i+1

R= K−1
i , (Q12)

R−1Ei+1R= Ei , (Q13)

R−1Fi+1R= Fi . (Q14)

The following result was proved in [11, Theorem 3.1.10].

Theorem 1.4.4 The algebrâU(ĝln) is a Hopf algebra with multiplicationµ , unit
η, comultiplication∆ , counitε and antipode S. The comultiplication is defined by

∆ (1) = 1⊗1,

∆ (Ei) = Ei ⊗KiK
−1
i+1 +1⊗Ei,

∆ (Fi) = K−1
i Ki+1⊗Fi +Fi ⊗1,

∆ (X) = X⊗X for X ∈ {Ki ,K
−1
i ,R,R−1}.



10 S. R. Doty, R. M. Green

The counit is defined by

ε(Ei) = ε(Fi) = 0,

ε(Ki) = ε(K−1
i ) = ε(R) = ε(R−1) = 1.

The antipode is defined by

S(Ei) = −EiK
−1
i Ki+1,

S(Fi) = −KiK
−1
i+1Fi ,

S(Ki) = K−1
i ,

S(K−1
i ) = Ki ,

S(R) = R−1,

S(R−1) = R.

The unit satisfiesη(1) = 1U .

Note that the usual Hopf algebra structure onU(gln) andU(ĝln) is obtained by
restricting the operations of Theorem 1.4.4 above.

Let V be theQ(v)-vector space with basis{et : t ∈ Z}. This has a natural
Û(ĝln)-module structure as follows.

Lemma 1.4.5 There is a left action of̂U(ĝln) on V defined by the conditions

Eiet+1 = et if i = t modn,

Eiet+1 = 0 if i 6= t modn,

Fiet = et+1 if i = t modn,

Fiet = 0 if i 6= t modn,

Kiet = vet if i = t modn,

Kiet = et if i 6= t modn,

Ret = et+1.

Proof See [11, Lemma 3.2.1]. ⊓⊔
SinceÛ(ĝln) is a Hopf algebra, the tensor product of twoÛ(ĝln)-modules has

a natural̂U(ĝln)-module structure via the comultiplication∆ .

Definition 1.4.6 The vector spaceV⊗r has a natural̂U(ĝln)-module structure given
by

u.x = ∆ (u)(r−1)x.
We call this moduletensor space. The weightλ = (λ1, . . . ,λn)∈Λ (n, r) of a basis
element

et1 ⊗et2 ⊗·· ·⊗etr

of V⊗r is given by the condition

λi := |{ j : t j ≡ i modn}|
for i = 1, . . . ,n. Theλ -weight space,Vλ , of V⊗r is the span of all the basis vectors
of weightλ .
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Henceforth, we will always assume thatq = v2, and regardQ(v) as an algebra
over A = Z[q,q−1] by means of the ring homomorphismA → Q(v) such that
q→ v2, q−1 → v−2.

The following result about the affineq-Schur algebra, which will be used fre-
quently in the sequel, was proved in [11, Theorem 3.4.8].

Theorem 1.4.7 The quotient of̂U(ĝln) by the kernel of its action on tensor space
is isomorphic as aQ(v)-algebra to the algebraQ(v)⊗A Ŝq(n, r).

There is a corresponding result for the finiteq-Schur algebra. This was intro-
duced in [1]; see [8] or [10] for more details.

Theorem 1.4.8 Let V′ be the submodule of V spanned by the ej for 1 ≤ j ≤ n.
Then the quotient ofU(gln) by the kernel of its action on(V ′)⊗r is isomorphic
as aQ(v)-algebra to the algebraQ(v)⊗A Sq(n, r). We denote the corresponding
epimorphism fromU(gln) to Q(v)⊗A Sq(n, r) by α.

Definition 1.4.9 For convenience of notation, we shall henceforth denote byŜv(n, r)
the algebraQ(v)⊗A Ŝq(n, r) and bySv(n, r) its finite analogueQ(v)⊗A Sq(n, r).
We may refer to these algebras as the affinev-Schur algebra andv-Schur algebra,
respectively.

It will be useful in the sequel to consider the weight spaces of Sv(n, r) as right
Q(v)⊗A H (Sr ) modules. The following result is useful in such a context.

Lemma 1.4.10 Let1≤ i1 ≤ i2 ≤ ·· · ≤ ir ≤ n, and letλ ∈ Λ (n, r) be such thatλ j
is the number of occurrences of j in the sequence(i1, i2, . . . , ir). Then theλ -weight
space of V′⊗r is generated as a rightQ(v)⊗A H (Sr)-module by the element

ei1 ⊗ei2 ⊗·· ·⊗eir .

Proof This is a well known result, which can be seen for example by using the
definition ofSv(n, r) together with the isomorphism, given in [8], between tensor-
space and Dipper and James’ “q-tensor space” (see [6]). ⊓⊔

Although(V ′)⊗r is not aÛ(ĝln)-module, we have the following

Lemma 1.4.11 The action of u∈ Û(ĝln) on V⊗r is determined by its action on the
subspace(V ′)⊗r .

Proof This is part of [11, Proposition 3.2.5]. ⊓⊔

1.5 Lusztig’s approach

In §1.5 we review the approach to the affineq-Schur algebra used by Lusztig [17],
McGerty [18] and others. We start by recalling McGerty’s definitions from [18,
§2].
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Let Vε be a free rankr module overk[ε,ε−1], wherek is a finite field ofq
elements, andε is an indeterminate.

Let F n be the space ofn-step periodic lattices, i.e. sequencesL = (Li)i∈Z

of lattices in our free moduleVε such thatLi ⊂ Li+1, andLi−n = εLi . The group
G = Aut(V) acts onF n in the natural way. LetSr,n be the set of nonnegative
integer sequences(ai)i∈Z, such thatai = ai+n and∑n

i=1ai = r, and letSr,n,n be
the set ofZ×Z matricesA = (ai, j )i, j∈Z with nonnegative entries such thatai, j =
ai+n, j+n and∑i∈[1,n], j∈Z ai, j = r. The orbits ofG onF n are indexed bySr,n, where
L is in the orbitFa corresponding toa if ai = dimk(Li/Li−1). The orbits ofG on
F n×F n are indexed by the matricesSr,n,n, where a pair(L ,L ′) is in the orbit
OA corresponding toA if

ai, j = dim

(
Li ∩L′

j

(Li−1∩L′
j)+(Li ∩L′

j−1)

)
.

For A ∈ Sr,n,n let r(A),c(A) ∈ Sr,n be given byr(A)i = ∑ j∈Z ai, j and r(A) j =
∑i∈Z ai, j .

Similarly let Br be the space of complete periodic lattices, that is, sequences
of latticesL = (Li) such thatLi ⊂ Li+1, Li−r = εLi , and dimk(Li/Li−1) = 1 for all
i ∈Z. Letb0 = (. . . ,1,1, . . .). The orbits ofG onBr ×Br are indexed by matrices
A∈ Sn,n,n where the matrixA must haver(A) = c(A) = b0.

LetAr,q, Hr,q andTr,q be the span of the characteristic functions of theG orbits
on F n×F n, Br ×Br andF n×Br respectively. Convolution makesAr,q and
Hr,q into algebras andTr into aAr,q–Hr,q bimodule. ForA∈ Sr,n,n set

dA = ∑
i≥k, j<l ,1≤i≤n

ai j akl .

Let {eA : A∈Sr,n,n} be the basis ofAr,q given by the characteristic function of the
orbit corresponding toA, and let{[A] : A ∈ Sr,n,n} be the basis ofAr,q given by
[A] = q−dA/2eA. Whenn = r, the subset of either basis spanned by all monomial
matricesA spansHr,q.

All of these spaces of functions are the specialization atv =
√

q of modules
overA = Z[v,v−1], which we denote byAr , Hr andTr respectively; herev is an
indeterminate.

Proposition 1.5.1 (Varagnolo–Vasserot)TheA -algebraAr is naturally isomor-
phic to the affine q-Schur algebrâSv(n, r) of Definition 1.3.4. Furthermore, the
isomorphism may be chosen to identify the basis of Definition1.3.5 with the basis
{eA : A∈ Sr,n,n}.

Proof The necessary isomorphism is the mapΦ given in [20, Proposition 7.4 (a)].
⊓⊔

We will also need thecanonical basis, {{A} : A∈ Sr,n,n}, for Ŝv(n, r). This is
related to the basis{[A] : A∈ Sr,n,n} in a unitriangular way: we have

{A} = ∑
A1:A1≤A

ΠA1,A[A1],
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where≤ is a certain natural partial order and theΠA1,A are certain Laurent polyno-
mials (similar to the famous Kazhdan–Lusztig polynomialsPy,w of [14]) satisfying
ΠA,A = 1. The reader is referred to [17,§4] for full details, or to [11,§2.4] for a
more elementary construction.

An elementA∈ Sr,n,n is said to beaperiodicif for any p∈ Z\{0} there exists
k∈ Z such thatak,k+p = 0. LetSap

r,n,n be the set of aperiodic elements inSr,n,n.

Theorem 1.5.2 (Lusztig) Under the identifications of Theorem 1.4.7, the subal-
gebraU(ĝln) of Û(ĝln) projects to theQ(v)-span of the elements

{{A} : A∈ Sap
r,n,n}.

Proof This is [17, Theorem 8.2]. ⊓⊔

Remark 1.5.3 Theorem 1.5.2 is not true if we replace the canonical basis byone
of the other two bases so far discussed.

If we haven > r, elementary considerations show that every element ofSr,n,n

is aperiodic. This means that the subalgebra ofŜv(n, r) described in Theorem 1.5.2
is in fact the whole of̂Sv(n, r), so that we may refer to the algebra of Theorem 1.5.2
as “the affineq-Schur algebra” without confusion. We will concentrate on the case
n > r in this paper.

1.6 Main results

Our main aim is to prove the following

Theorem 1.6.1 Let n> r, and identifyŜv(n, r) with the quotient ofU(ĝln) de-
scribed in Theorem 1.5.2 (see Remark 1.5.3). OverQ(v), the affine v-Schur alge-
bra Ŝv(n, r) is given by generators Ei ,Fi ,Ki ,K

−1
i (1 ≤ i ≤ n) subject to relations

(Q1) to (Q9) of Definition 1.4.2 (reading indices modulo n), together with the
relations

K1K2 · · ·Kn = vr (Q15)

(Ki −1)(Ki −v)(Ki −v2) · · ·(Ki −vr) = 0. (Q16)

The corresponding result in finite typeA was proved by the first author and A.
Giaquinto. We will appeal to it repeatedly in the sequel.

Theorem 1.6.2 IdentifySv(n, r) with the quotient ofU(gln) described in Theorem
1.4.8. OverQ(v), the v-Schur algebraSv(n, r) is given by generators Ei ,Fi (1 ≤
i ≤ n−1) and Ki ,K

−1
i (1≤ i ≤ n) subject to relations (Q1) to (Q9) of Definition

1.4.1, together with the relations

K1K2 · · ·Kn = vr

(Ki −1)(Ki −v)(Ki −v2) · · ·(Ki −vr) = 0.

Proof This is [7, Theorem 2.1]. ⊓⊔
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Definition 1.6.3 For now, we will denote byT the Q(v)-algebra given by the
generators and relations of Theorem 1.6.1, and we will denote the corresponding
epimorphism fromU(ĝln) to T by β . The main aim is thus to show thatT is
isomorphic tôSv(n, r).

Remark 1.6.4 There is an obvious isomorphism between the algebra given bythe
generators and relations of Theorem 1.6.2 and the subalgebra of T generated by
the images of the theEi , Fi , K j andK−1

j , where 1≤ i < n and 1≤ j ≤ n. This means

that if a relation in̂Sv(n, r) involving theEi , Fi andK j avoids all occurrences of
Ea andFa for some 1≤ a≤ n, then by Theorem 1.6.2 and symmetry, the relation
is a consequence of relations (Q15) and (Q16).

The following result establishes a natural surjection fromT to Ŝv(n, r), and
our main task in proving Theorem 1.6.1 will be to show that this map is an iso-
morphism, in other words, that relations (Q15) and (Q16) aresufficient.

Proposition 1.6.5 Relations (Q15) and (Q16) of Theorem 1.6.1 hold inŜv(n, r),
and thereforêSv(n, r) is a quotient of the algebra T . (We denote the corresponding
epimorphism byγ : T −→ Ŝv(n, r).)

Proof Using the comultiplication onU(ĝln), it may be easily checked that

K1K2 · · ·Kn−vr

and

(Ki −1)(Ki −v)(Ki −v2) · · ·(Ki −vr)

act as zero on the tensor space(V ′)⊗r given in Theorem 1.4.8. The result now
follows from Lemma 1.4.11. ⊓⊔

Remark 1.6.6 For later reference, we note that the mapsα,β ,γ respectively from
Theorem 1.4.8, Remark 1.6.4, and Proposition 1.6.5 fit together into the following
commutative diagram

Û(ĝln)

)) ))T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

U(ĝln) β
// //

?�

OO

T γ
// // Ŝv(n, r)

U(gln)
α // //

?�

OO

Sv(n, r)
?�

OO

in which all horizontal maps and the diagonal one are surjections, and all vertical
maps are injections.



Presenting affineq-Schur algebras 15

2 Proof of the main results

Most of this section is devoted to proving Theorem 1.6.1. Thefinal result of this
section, Theorem 2.6.1, is an equivalent formulation of Theorem 1.6.1, compatible
with Lusztig’s modified form of the quantized enveloping algebra.

2.1 A subalgebra of̂Sv(n, r) isomorphic toH (W)

A presentation for̂Sv(n, r) in the casen > r was given in [11, Proposition 2.5.1],
and our main strategy for proving Theorem 1.6.1 will be to adapt this presentation.

Proposition 2.1.1 The algebrâSv(n, r) is generated by elements

{φd
ω,ω : d ∈ Ŵ}∪{φ1

λ ,ω : λ ∈ Λ (n, r)}∪{φ1
ω,λ : λ ∈ Λ (n, r)}.

The elementsφd
ω,ω are subject to the relations of the affine Hecke algebra of Def-

inition 1.2.1 under the identification given by Theorem 1.3.6 (iii). The generators
are also subject to the following defining relations, where sdenotes a generator
si ∈ Ŵλ .

φ1
ω,λ φ1

µ,ω = δλ ,µ ∑
d∈Ŵλ

φd
ω,ω , (Q17)

φs
ω,ω φ1

ω,λ = qφ1
ω,λ , (Q18)

φ1
λ ,ω φs

ω,ω = qφ1
λ ,ω . (Q19)

A key step in understanding the structure of the algebraT of Definition 1.6.3
is locating within it a subalgebra isomorphic to the affine Hecke algebraH (Ŵ).
Theorem 1.3.6 (iii) shows that this can be done for the algebra Ŝv(n, r), and we
now review how this works in terms of endomorphisms of tensorspace. Recall the
definition of weight space from Definition 1.4.6, and the definition of the weight
ω from Definition 1.3.1.

Definition 2.1.2 For each 1≤ i < r, let τ(Tsi ) : Vω → Vω be the endomorphism

corresponding to the action ofvFiEi −1 ∈ Û(ĝln). Similarly, let τ(Tρ−1) be the
endomorphism corresponding to

FnFn−1 · · ·Fr+1R,

and letτ(Tρ) be the endomorphism corresponding to

ErEr+1 · · ·En−1R−1.

Lemma 2.1.3 The endomorphismsτ(Tw) defined above (for w∈ {si : 1 ≤ i <
r}∪{ρ,ρ−1}) satisfy the relations of Lemma 1.2.2 (after replacing Tw by τ(Tw)).
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Proof Using the epimorphismα ′ : U(gln) ։ Sv(n, r) studied in [1], [8], [10], one
finds that the action ofτ(Tsi ) on Vω in the case wherei 6= r corresponds to the
action ofφsi

ω,ω ∈ Sv(n, r). (Recall from Theorem 1.4.8 thatSv(n, r) is the quotient
of U(gln) by the annihilator ofV⊗r

n .) This proves relations(1′), (2′) and(3′) of
Lemma 1.2.2.

The effect ofτ(Tρ) onVω is

τ(Tρ)(ei1 ⊗·· ·⊗eir ) = ej1 ⊗·· ·⊗ej1,

where jt = it −1 modr. The effect ofτ(Tρ−1) onVω is the inverse of this action.
The proof of relations(4′) and (5′) now follow by calculation of the action of
vFiEi −1 onVω using the comultiplication. ⊓⊔

Remark 2.1.4 Definition 2.1.2 and Lemma 2.1.3 are very similar to [11, Defini-
tion 3.3.1] and [11, Lemma 3.3.2], respectively. They are included here because
[11, Definition 3.3.1] contains an incorrect definition forτ(Tsr ).

Lemma 2.1.5 Defineτ(Tsr ) := τ(Tρ)τ(Ts1)τ(Tρ−1). Then the map takingτ(Tw) to

Tw (where w∈ {si : 1≤ i ≤ r}∪{ρ,ρ−1}) extends uniquely to an isomorphism of
algebras betweenH (Ŵ) and the algebraτ(H ) generated by the endomorphisms
τ(Tw).

Proof This follows from Lemma 1.2.2 and the argument given in [11],namely
[11, Lemma 3.3.3, Lemma 3.3.4]. ⊓⊔

For later purposes, it will be convenient to have versions ofthe above results
that do not make reference to the grouplike elementsR andR−1. The following
lemma is the key to the necessary modifications. (Recall thatn≥ r +1 by assump-
tion.)

Lemma 2.1.6 Let e∈Vω . Then we have

R.e= (F1F2 · · ·Fr).e

and
R−1.e= (Er−1Er−2 · · ·E1)En.e.

Proof It is enough to consider the case where

e= ei1 ⊗ei2 ⊗·· ·⊗eir

is a basis element, and this turns out to be a straightforwardexercise using the
comultiplication inÛ(ĝln). ⊓⊔

Proposition 2.1.7 For each1≤ i < r, let τ ′(Tsi ) : Vω →Vω be the endomorphism

corresponding to the action of vFiEi −1 ∈ U(ĝln). Similarly, letτ ′(Tρ−1) be the
endomorphism corresponding to

(FnFn−1 · · ·Fr+1)(F1F2 · · ·Fr),
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and letτ ′(Tρ) be the endomorphism corresponding to

(ErEr+1 · · ·En−1)(Er−1Er−2 · · ·E1)En.

Then, after replacing Tw by τ ′(Tw), these endomorphisms satisfy the relations of
Lemma 1.2.2.

Proof Combine Lemma 2.1.6 with Lemma 2.1.3. ⊓⊔

2.2 Weight space decomposition ofT

An important property of the algebraT is that it possesses a decomposition into
left and right weight spaces, similar to that enjoyed by the ordinary and affine
q-Schur algebras.

Definition 2.2.1 An elementt ∈ T is said to be ofleft weightλ ∈ Λ (n, r) if for
eachi with 1≤ i ≤ n we have

β(Ki).t = vλi t.

whereβ is the map defined in Definition 1.6.3. There is an analogous definition
for elements ofright weightλ . The left (respectively, right)λ -weight spaceof T
is theQ(v)-submodule spanned by all elements of left (respectively, right) weight
λ .

Definition 2.2.2 For eachλ ∈ Λ (n, r), define the idempotent element 1λ ∈ T by
the image of 1λ ∈ Sv(n, r) under the canonical inclusion map from Remark 1.6.4.
Here the 1λ are the idempotents which were defined in [7, (3.4)]. The sum of
the 1λ , asλ varies overΛ (n, r), is 1. Moreover, 1λ 1µ = 0 for λ 6= µ , i.e. the
idempotents are pairwise orthogonal.

Proposition 2.2.3 The algebra T is the direct sum of its leftλ -weight spaces, and
the nonzeroλ -weight spaces are indexed by the elements ofΛ (n, r).

Proof Thanks to the above orthogonal decomposition of the identity in T, there is
a direct sum decomposition

T =
⊕

λ∈Λ(n,r) 1λ T.

Moreover, inSv(n, r) we have the identity

α(Ki)1λ = λi1λ (i = 1, . . . ,n)

from [7, Proposition 8.3(a)], whereα is the quotient mapU(gln) → Sv(n, r) of
Theorem 1.4.8. Now it follows from the embedding of Remark 1.6.4, or more
precisely from the commutativity of the diagram in Remark 1.6.6, that

β(Ki)1λ = λi1λ (i = 1, . . . ,n)

holds in the algebraT. Thus it follows thatβ(Ki)v= λiv for all i = 1, . . . ,n and all
v∈ 1λ T. This proves that 1λ T is theλ -weight space inT. ⊓⊔
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For simplicity’s sake, we will write Ei in place ofβ(Ei) and Fi in place ofβ(Fi)
for the remainder of§2.2.

Lemma 2.2.4 (i) In T we have K±1
i 1λ = v±λi 1λ .

(ii) The idempotent1λ lies within the subalgebra of T generated by the Ki .
(iii) In T , the idempotent1λ coincides with the image ofφ1

λ ,λ underβ .

Proof Part (i) is already contained in the proof of the preceding proposition, and
part (ii) is due to the definition of 1λ in [7] as

1λ =
[

K1
λ1

]
· · ·
[

Kn
λn

]
.

where
[

Ki
t

]
= ∏t

s=1
Kiv−s+1−K−1

i vs−1

vs−v−s .
Part (iii) is a consequence of the remarks preceding [10, Lemma 2.9] combined

with [10, Corollary 2.10]. ⊓⊔

Definition 2.2.5 For eachi with 1 ≤ i ≤ n, let αi = ((αi)1, . . . ,(αi)n) be then-
tuple of integers given by

(αi) j =





1 if j ≡ i modn,

−1 if j ≡ i +1 modn,

0 otherwise.

The following identities will be used frequently in the sequel, often without
explicit reference. In these identities, it will be convenient to regard a weightλ =
(λ1, . . . ,λn) as an infinite periodic sequence of integers, indexed byZ, by setting
λ j for any j ∈ Z to the corresponding valueλi such that 1≤ i ≤ n and j ≡ i mod
n.

Lemma 2.2.6 Letλ ∈Λ (n, r), extended to an infinite periodic sequence as above.
The following identities hold in T :
(i) For any1≤ i ≤ n, we have

Ei1λ =

{
1λ+αi

Ei if λi+1 > 0;
0 otherwise.

(ii) For any1≤ i ≤ n, we have

Fi1λ =

{
1λ−αi

Fi if λi > 0;
0 otherwise.

Proof By Remark 1.6.4 and Lemma 2.2.4, it is enough to check that both sides of
each identity agree after projection toŜv(n, r). By Theorem 1.4.7, it is enough to
check that both sides of each identity agree in their action on tensor space, which
is a routine calculation. ⊓⊔

The following lemma will be used extensively in the sequel. We will some-
times refer to it as thecancellation principlefor T.
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Lemma 2.2.7 Let c≥1. Letλ ∈Λ (n, r), extended to an infinite periodic sequence
as above. The following identities hold in T :
(i) For each1≤ i ≤ n with λi = 0, there exists a nonzero element z∈ A such that

Fc
i Ec

i 1λ =

{
z1λ if λi+1 ≥ c;
0 otherwise.

Furthermore, if c= λi+1 = 1 then z= 1.
(ii) For each1≤ i ≤ n with λi+1 = 0, there exists a nonzero z′ ∈ A such that

Ec
i Fc

i 1λ =

{
z′1λ if λi ≥ c;
0 otherwise.

Furthermore, if c= λi = 1, then z′ = 1.

Proof By the formulas in [16, 3.1.9] we have the following identities inU(ĝln):

E(c)
i F(c)

i = ∑
t≥0

F(c−t)
i

t

∏
s=1

v2t−2c−s+1K̃i −v−2t+2c+s−1K̃−1
i

vs−v−s E(c−t)
i

F(c)
i E(c)

i = ∑
t≥0

E(c−t)
i

t

∏
s=1

v2t−2c−s+1K̃−1
i −v−2t+2c+s−1K̃i

vs−v−s F(c−t)
i

whereK̃i = KiK
−1
i+1 andX(m) = Xm/[m]! for X = Ei ,Fi. Here[m] is the quantum

integer[m] = (vm−v−m)/(v−v−1) and[m]! = [1] · · · [m−1][m] for anym∈ N.
Since the above identities hold inU(ĝln), they hold in the quotientT. Multiply

the second identity on the right by 1λ . By Lemma 2.2.6 and the hypothesisλi = 0
all terms on the right hand side will then vanish, excepting the term corresponding
to t = c. So we obtain the identity

F(c)
i E(c)

i 1λ =
c

∏
s=1

v−s+1K̃−1
i −vs−1K̃i

vs−v−s 1λ

and a similar argument with the first identity above in light of the hypothesis
λi+1 = 0 yields the identity

E(c)
i F(c)

i 1λ =
c

∏
s=1

v−s+1K̃i −vs−1K̃−1
i

vs−v−s 1λ .

These are identities in the quotientT. In fact, they hold in the subalgebraSv(n, r)
under the embedding of Remark 1.6.4. By Lemma 2.2.4(i) the above identities in
T take the form

F(c)
i E(c)

i 1λ =
c

∏
s=1

vλi+1−λi−s+1−vλi−λi+1+s−1

vs−v−s 1λ

E(c)
i F(c)

i 1λ =
c

∏
s=1

vλi−λi+1−s+1−vλi+1−λis−1

vs−v−s 1λ .
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Remembering thatλi = 0 in the first formula andλi+1 = 0 in the second, by mul-
tiplying through by([c]!)2 we obtain the desired result, where

z= ([c]!)2
[

λi+1
c

]
, z′ = ([c]!)2

[
λi
c

]
.

in terms of the standard Gaussian binomial coefficients (seee.g.[16, §1.3]). The
proof is complete. ⊓⊔

Definition 2.2.8 Maintain the notation of Lemma 2.2.7. LetM be a monomial in
the various elementsEi , Fi and 1λ of T. We call a monomialM′ a reductionof M
if it (a) represents the same element ofT asM and (b)M′ can be obtained fromM
by omitting zero or more generators ofM of the form 1µ .

A distinguished termin the algebraT is an element ofT of one of the following
two forms:
(i) Ec

i 1λ , wherec≥ 0 andλi = 0;
(ii) Fc

i 1λ , wherec≥ 0 andλi+1 = 0.
A strictly distinguished monomialin the algebraT is a monomial in the el-

ementsFi, Ei and 1λ that can be parsed as a word in the distinguished terms. A
reduction of a strictly distinguished monomial is called adistinguished monomial.

Example 2.2.9 The idempotents 1λ are both distinguished terms and distinguished
monomials inT: here, we takec = 0.

If λi = 0 andλi+1 = c then the elementM′ = Fc
i Ec

i 1λ of Lemma 2.2.7 (i) is a
distinguished monomial. Indeed, it can be seen by repeated applications of Lemma
2.2.6 (i) and the fact that 1λ is idempotent, thatM′ is a reduction of the strictly
distinguished monomialM = (Fc

i 1λ+cαi
)(Ec

i 1λ ). (To verify thatM is strictly dis-
tinguished, one must note that(λ + cαi)i+1 = 0.) Furthermore, by Lemma 2.2.7
and the fact thatλi+1 ≥ c, we see thatM = M′ is a nonzero element ofT.

Similarly, if λi = c andλi+1 = 0 then the elementEc
i Fc

i 1λ of Lemma 2.2.7 (ii)
is a distinguished monomial.

In the sequel, we will make use of various automorphisms ofT; part (i) below
may be used without explicit comment.

Proposition 2.2.10 (i) There is a unique automorphismν of T of order n satisfy-
ing

ν(Ei) = Ei+1,

ν(Fi) = Fi+1 and

ν(K±1
i ) = K±1

i+1,

for all 1≤ i ≤ n, and reading subscripts modulo n. Letλ ∈ Λ (n, r) and define

λ+ = (λn,λ1,λ2,λ3, . . . ,λn−1).

Thenν(1λ ) = 1λ+
.

(ii) There is a unique anti-automorphismσ of T satisfying

σ(Ei) = Fi ,
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σ(Fi) = Ei and

σ(K±1
i ) = K±1

i ,

for all 1≤ i ≤ n. The anti-automorphismσ fixes all elements1λ ∈ T.

Proof For (i), we note that there is an automorphism ofU(ĝln) corresponding to
ν, that in addition fixes the elementsR±1; this can be verified by checking the
defining relations forU(ĝln). Since this automorphism preserves setwise the set
of relations (Q15) and (Q16) inT, we obtain an automorphism ofT as claimed; it
is unique because we have given its effect on a generating set(see Theorem 1.6.1).
The last claim of (i) follows from the relationship between theKi and 1λ ; see for
example [10, Corollary 2.10].

The same line of argument can be used to prove (ii). ⊓⊔

Lemma 2.2.11 Let M = t1t2 · · · tk be a strictly distinguished monomial with dis-
tinguished terms ti . Then M6= 0 if and only if the following two conditions hold:
(i) each term ti is nonzero;
(ii) for each1≤ i < k, there existsλ ∈Λ (n, r) such that ti = ti1λ and ti+1 = 1λ ti+1.

Proof Condition (i) is clearly necessary forM to be nonzero. To see the necessity
of condition (ii), recall from Lemma 2.2.6 that for each termti , there existλ ,µ ∈
Λ (n, r) such thatti = 1λ ti = ti1µ .

We now check sufficiency. It will be enough to show thatσ(M)M 6= 0, where
σ is as in Proposition 2.2.10. This follows from Lemma 2.2.7. Indeed, the hy-
pothesesλi+1 ≥ c or λi ≥ c follow from condition (i) above, and condition (ii)
above implies that ifti1λ = ti then we have

σ(ti+1)σ(ti)titi+1 = z′′σ(ti+1)1λ ti+1

= z′′σ(ti+1)ti+1,

wherez′′ is equal either toz or to z′ as in Lemma 2.2.7. There is a uniqueµ ∈
Λ (n, r) such thatM = M1µ , and an induction now shows thatσ(M)M is a nonzero
scalar multiple of 1µ , completing the proof. ⊓⊔

2.3 A subalgebra ofT isomorphic tôSv(n, r)

The aim of§2.3 is to show that the relations satisfied by the endomorphisms of
Proposition 2.1.7 are in fact consequences of the defining relations (Q15) and
(Q16) of the algebraT. In this section, we may abuse notation by identifying
elementsu of U(ĝln) with their imagesβ(u) in T (see Definition 1.6.3).

Recall from Remark 1.6.4 that there is a natural subalgebra of T isomorphic to
the ordinaryv-Schur algebra,Sv(n, r). Using this fact, we can make the following

Definition 2.3.1 For each 1≤ i < r, define elements ofT by

ζ (Tsi ) = (vFiEi −1)1ω ,

ζ (Tρ−1) = ((FnFn−1 · · ·Fr+1)(F1F2 · · ·Fr))1ω ,

ζ (Tρ) = ((ErEr+1 · · ·En−1)(Er−1Er−2 · · ·E1)En)1ω .
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Remark 2.3.2 It follows from repeated applications of Lemma 2.2.6 that each
elementζ (Tw) given in Definition 2.3.1 has the property that 1ω ζ (Tw) = ζ (Tw).

Lemma 2.3.3 The expressions given forζ (Tρ−1) and ζ (Tρ) are distinguished
monomials.

Proof This is a routine exercise, in which the hypothesis thatn > r plays an im-
portant part. ⊓⊔

Lemma 2.3.4 The following identities hold in T :
(i) ζ (Tρ−1) = (Fn(F1F2 · · ·Fr−2Fr−1)(Fn−1Fn−2 · · ·Fr+1Fr))1ω ;
(ii) ζ (Tρ) = ((ErEr−1 · · ·E2E1)(Er+1Er+2 · · ·En−1En))1ω .

Proof Equation (i) (respectively, (ii)) follows by applying repeated commutations
between the generatorsFi (respectively,Ei). ⊓⊔

Lemma 2.3.5 The following identities hold in T :
(i) ζ (Tρ−1)ζ (Tρ) = 1ω ;
(ii) ζ (Tρ)ζ (Tρ−1) = 1ω .

Proof Let ω ′ ∈ Λ (n, r) be the weightω ′ = (0,1, . . . ,1,0, . . . ,0), where the occur-
rences of 1 appear in positions 2,3,4, . . . , r +1≤ n. Then it follows from Lemma
2.3.4 that

ζ (Tρ) = 1ω ((ErEr−1 · · ·E2E1)1ω ′(Er+1Er+2 · · ·En−1En))1ω

and it follows from Definition 2.3.1 that

ζ (Tρ−1) = 1ω ((FnFn−1 · · ·Fr+1)1ω ′(F1F2 · · ·Fr))1ω .

We will prove (i), and (ii) follows by a similar argument.
To prove (i), we first show that

1ω ′(F1F2 · · ·Fr)1ω(ErEr−1 · · ·E2E1)1ω ′ = 1w′ .

The left hand side of the equation is readily checked to be a good monomial,
and then the equation follows by repeated applications of the c = 1 case of the
cancellation principle (Lemma 2.2.7), starting in the middle of the equation (i.e.,
with Fr1ω Er). A similar argument shows that

1ω (FnFn−1 · · ·Fr+1)1ω ′(Er+1Er+2 · · ·En−1En)1ω = 1ω .

Part (i) follows by combining these last two identities. ⊓⊔

Lemma 2.3.6 Let1 < i < r, and let

M = (Er−1Er−2 · · ·E1)(Er+1Er+2 · · ·En)1ω .

Then the identity(vFi−1Ei−1−1)M = M(vFiEi −1) holds in T .

Note.Notice that both sides of the identity have right weightω.
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Proof Since the identity involves no occurrences ofEr or Fr , Remark 1.6.4 ap-
plies. More precisely, after applying a suitable symmetry of the Dynkin diagram,
we see that it suffices to prove the identity

(vFn−r+i−1En−r+i−1−1)M′ = M′(vFn−r+iEn−r+i −1)

in the ordinaryv-Schur algebra, where indices are read modulon, and we have

M′ = (En−1En−2 · · ·En−r+1)(E1E2 · · ·En−r)1ω ,

and
ω ′ = (0,0, . . . ,0,1,1, . . . ,1),

where 1 occursr times inω ′.
By Theorem 1.4.8, it suffices to show that both sides of the identity act in the

same way on tensor spaceV ′⊗r , and because both sides of the identity have right
weightω ′, it is enough to check this on theω ′-weight space. By Lemma 1.4.10, it
is enough to check that each side of the identity acts the sameon the element

eω ′ = en−r+1⊗en−r+2⊗·· ·⊗en.

Fix j with 1≤ j < r, and letej,ω ′ be the tensor obtained by exchanging the oc-
currences ofen−r+ j anden−r+ j+1 in eω ′ . Using the comultiplication, it is a routine
calculation to show that

(Fn−r+ jEn−r+ j )eω = ej,ω ′ +v−1eω ′ ,

and it is immediate from this that

(vFn−r+ jEn−r+ j −1)eω = vej,ω ′ .

Another calculation with the comultiplication shows that

(En−1En−2 · · ·En−r+1)(E1E2 · · ·En−r)1ω ′eω ′ = e′ω ′ ,

where
e′ω ′ = e1⊗ (en−r+1⊗en−r+2⊗·· ·⊗en−1).

Let j be such that 1≤ j < r. Letting(vFn−r+ jEn−r+ j −1) act on the left, we deduce
that

(vFn−r+ jEn−r+ j −1)(En−1En−2 · · ·En−r+1)(E1E2 · · ·En−r)1ω ′e′ω ′ = ve′j,ω ′ ,

wheree′j,ω ′ is obtained fromej,ω by exchanging the occurrences ofen−r+ j and
en−r+ j+1.

The result now follows after we observe that

(En−1En−2 · · ·En−r+1)(E1E2 · · ·En−r)1ω ′ej+1,ω ′ = e′j,ω ′ .

⊓⊔

Corollary 2.3.7 If i is such that1 < i < r, then the relation

ζ (Tsi−1)ζ (Tρ) = ζ (Tρ)ζ (Tsi )

holds in T .
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Proof Observe thatEr commutes withFi , Fi−1, Ei andEi−1. The assertion now
follows by left-multiplying the identity of Lemma 2.3.6 byEr . ⊓⊔

The techniques of proof of Lemma 2.3.6 play an important partin the next
brace of results.

Lemma 2.3.8 The following identities hold in T , where1 < i < r:
(i) (FiEi −v−1)1ω = (EiFi −v)1ω ;
(ii) 1ω(FnFn−1 · · ·FrErEr+1 · · ·En−v−1) = 1ω (ErEr+1 · · ·EnFnFn−1 · · ·Fr −v);
(iii) (EnFn−v)E1En1ω = E1En(E1F1−v)1ω ;
(iv) 1ω (Fr−1Er−1−v−1)ErEr−1 · · ·E2E1 = 1ω ErEr−1 · · ·E2E1(FrEr −v−1).

Note.The expressions appearing in (i) and (ii) above have both left and right
weight equal toω.

Proof We omit the proof of (i), because it is similar to, but easier than, the proof
of (ii).

To prove (ii), it is enough, by symmetry of the defining relations ofT, to prove
the identity

1ω−(Fn−1 · · ·Fr−1Er−1 · · ·En−1−v−1) = 1ω−(Er−1 · · ·En−1Fn−1 · · ·Fr−1−v),

where
ω− = (1,1, . . . ,1︸ ︷︷ ︸

r−1

,0,0, . . . ,0︸ ︷︷ ︸
n−r

,1).

This can be regarded as an identity inSv(n, r). By Lemma 1.4.10, it is enough to
check that each side of the identity acts in the same way on theelement

eω− = e1⊗e2⊗·· ·⊗er−2⊗er−1⊗en.

A calculation shows that each side of the identity acts oneω− to give

e1⊗e2⊗·· ·⊗er−2⊗en⊗er−1.

To prove (iii), it is enough by symmetry of the defining relations to prove

(E1F1−v)E2E11ω+ = E2E1(E2F2−v)1ω+ ,

where
ω+ = (0,1,1, . . . ,1︸ ︷︷ ︸

r

,0,0, . . . ,0︸ ︷︷ ︸
n−r−1

).

By Lemma 1.4.10, it is enough to show that both sides of the identity act in the
same way on

eω+ = e2⊗e3⊗·· ·⊗er+1.

A calculation shows that each side sendseω+ to

e2⊗e1⊗e4⊗e5⊗·· ·⊗er+1.

For (iv), observe that both sides of the identity have right weightω+, as defined
above. Since (iv) can be regarded as an identity inSv(n, r), Lemma 1.4.10 applies
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and it is enough to check that both sides of the identity have the same effect on
eω+ . A calculation shows that both sides of the identity sendeω+ to

e1⊗e2⊗·· ·⊗er−3⊗er−2⊗er ⊗er−1.

⊓⊔

Definition 2.3.9 We defineζ (Tsr ) to be the element ofT given by

1ω (FnFn−1 · · ·FrErEr+1 · · ·En−v−1).

Lemma 2.3.10 The following identities hold in T :
(i) ζ (Tρ)ζ (Tsr ) = ζ (Tsr−1)ζ (Tρ);
(ii) ζ (Tρ)ζ (Ts1) = ζ (Tsr )ζ (Tρ).

Proof We prove (i) first. Using Lemma 2.3.4(ii), it is enough to prove that the
expressions

M1 = 1ω (ErEr−1 · · ·E1)(Er+1Er+2 · · ·En)(FnFn−1 · · ·Fr+1Fr)(ErEr+1 · · ·En)

and
M2 = 1ω(Fr−1Er−1)(ErEr−1 · · ·E1)(Er+1Er+2 · · ·En)

are equal.
Using Lemma 2.2.6 repeatedly, and the notation of the proof of Lemma 2.3.6,

we find that

M1 = 1ωErEr−1 · · ·E1(1ω+Er+1Er+2 · · ·EnFnFn−1 · · ·Fr+11ω+)FrErEr+1 · · ·En,

and repeated applications of the cancellation principle (Lemma 2.2.7) show that
the given parenthetic expression is identically equal to 1ω+ . By Lemma 2.2.6
again, we have

M1 = 1ω ErEr−1 · · ·E11ω+FrErEr+1 · · ·En

= 1ω (ErEr−1 · · ·E1)FrEr(Er+1Er+2 · · ·En).

Applying Lemma 2.3.8 (iv) gives

M1 = 1ω Fr−1Er−1(ErEr−1 · · ·E1)(Er+1Er+2 · · ·En),

which isM2, as required.
We now turn to (ii). By Lemma 2.3.8, parts (i) and (ii), it is enough to show

that the monomials

M3 = 1ω (ErEr+1 · · ·En)(FnFn−1 · · ·Fr)(ErEr+1 · · ·En−1)(Er−1Er−2 · · ·E1)En

and
M4 = 1ω(ErEr+1 · · ·En−1)(Er−1Er−2 · · ·E1)En(E1F1)

are equal. Using Lemma 2.2.6 and the notation of the proof of Lemma 2.3.6 again,
we find thatM3 is equal to

1ωErEr+1 · · ·EnFn(1ω−Fn−1Fn−2 · · ·FrErEr+1 · · ·En−11ω−)Er−1Er−2 · · ·E1En.
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By the cancellation principle, this simplifies to

M3 = 1ω ErEr+1 · · ·EnFn1ω−Er−1Er−2 · · ·E1En

= 1ω (ErEr+1 · · ·En−1)(EnFn)(Er−1Er−2 · · ·E1)En.

Applying commutations yields

M3 = 1ω (ErEr+1 · · ·En−1)(Er−1Er−2 · · ·E2)(EnFnE1En).

Using Lemma 2.3.8 (iii), we have

M3 = 1ω (ErEr+1 · · ·En−1)(Er−1Er−2 · · ·E2)(E1EnE1F1),

which is equal toM4, as desired. ⊓⊔

Proposition 2.3.11 Letγ : T −→ Ŝv(n, r) be the epimorphism of Proposition 1.6.5.
Thenγ admits a right inverse: there is an injective homomorphism

ι : Ŝv(n, r) −→ T

such thatγ ◦ ι is the identity homomorphism on̂Sv(n, r).

Proof We start by specifyingι on the subalgebra of̂Sv(n, r) spanned by the ele-
mentsφd

ω,ω , as in§2.1. We define

ι(τ(Tsi )) := ζ (Tsi )

for 1≤ i < r, and define

ι(τ(Tρ±1)) := ζ (Tρ±1).

In these cases,γ ◦ ι is the identity map by Proposition 2.1.7 and the definition of
ζ , so it is enough to check that the relations of Lemma 1.2.2 aresatisfied in the
image ofι . The difficult cases, (4′) and (5′), follow from Lemma 2.3.5, Corollary
2.3.7 and Lemma 2.3.10. Since those cases hold, it is enough to check cases (1′),
(2′) and (3′) assuming that neithers nor t is equal tor; this follows from Lemma
2.1.3 and Remark 1.6.4.

It remains to check relations (Q17), (Q18) and (Q19) of Proposition 2.1.1.
Since, by Remark 1.6.4, there is a canonically embedded copyof Sv(n, r) in the
algebraT (namely, the subalgebra generated by allEi , Fi , K±1

j with i 6= n), we may

send the elementsφ1
ω,λ , φ1

µ,ω andφd
ω,ω (whered lies in the finite symmetric group)

to the corresponding elements ofT. (Observe that this construction is compatible
with the definitions in the previous paragraph.) More explicitly, if M is a polyno-
mial in the generatorsEi , Fi , K j , K−1

j and there are no occurrences ofEn or Fn,
thenα(M) ∈ Sv(n, r) andι(α(M)) = β(M) by construction. It then follows that

(γ ◦ ι)(α(M)) = γ(β(M)) = α(M),

as required. Relations (Q17), (Q18) and (Q19) can be seen to hold in T (and thus
in the image ofι) by Theorem 1.6.2 and Remark 1.6.4. ⊓⊔
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2.4 Surjectivity ofι

So far we have shown that there is a monomorphismι : Ŝv(n, r) −→ T. From
Definition 1.6.3 we have a surjective mapβ : U(ĝln) −→ T. We aim in§2.4 to
show that the image ofβ is contained in the image ofι , which will complete the
proof of Theorem 1.6.1.

Lemma 2.4.1 The algebra T is generated by the all elements of the form Ei1λ ,
1λ Fi and1λ , for 1≤ i ≤ n andλ ∈ Λ (n, r).

Proof The images of theKi andK−1
i in T are linear combinations of the elements

1λ , as they are in the ordinaryv-Schur algebra (see [10, Corollary 2.10]). The
image ofEi in T is a linear combination of elementsEi1λ , because the 1λ form an
orthogonal decomposition of the identity (see Lemma 2.2.4). Similarly, the image
of Fi in T is a linear combination of elements 1λ Fi . This shows that the usual
algebra generators ofT lie in the span of the elements listed in the statement.
Conversely, it follows from the definitions (see Definition 2.2.2) that the elements
listed lie inT, completing the proof. ⊓⊔

Lemma 2.4.2 If i 6= n andλ ∈ Λ (n, r), the elements Ei1λ , 1λ Fi and1λ lie in the
image ofι .

Proof The elements listed in the statement lie in the canonically embedded copy
of Sv(n, r) in T. By the construction ofι (see the proof of Proposition 2.3.11),
such elements lie in the image ofι . ⊓⊔

Lemma 2.4.3 (i) The element En1ω of T lies inι(Ŝv(n, r)).
(ii) The element1ω Fn of T lies inι(Ŝv(n, r)).

Proof By construction ofι , the elementζ (Tρ) lies in the image ofι . SinceT
contains a canonical copy ofSv(n, r) (see the proof of Proposition 2.3.11), the
element

(F1F2 · · ·Fr−1)(Fn−1Fn−2 · · ·Fr)1ω

lies in the image ofι . By multiplying these two elements we see that

(F1F2 · · ·Fr−1)(Fn−1Fn−2 · · ·Fr)(ErEr+1 · · ·En−1)(Er−1Er−2 · · ·E1)En1ω

lies in the image ofι . Applying the cancellation principle, this latter expression
simplifies toEn1ω , completing the proof of (i).

A similar argument usingζ (Tρ−1) in place ofζ (Tρ) can be used to prove (ii).
⊓⊔

Our main effort will be directed towards proving that the elementsEn1λ lie in
the image ofι . More precisely, we will prove thatEn1λ lies in the ideal of Im(ι)
generated byEn1ω . Our argument will rely on the following technical lemma
whose proof will be deferred to§2.5.
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Lemma 2.4.4 Fix λ ∈Λ (n, r) such thatλ1 > 0. There exists a distinguished mono-
mial M in the generators Ei , Fi and1µ satisfying the following conditions:
(i) M = 1ω M1λ 6= 0;
(ii) M contains no occurrences of En, Fn, E1 or Fn−1;
(iii) all the occurrences of F1 occur consecutively, as do all the occurrences of
En−1;
(iv) there are at mostλ1−1 occurrences of F1.

Lemma 2.4.5 Let σ be the antiautomorphism of T given in Proposition 2.2.10
(ii), and let M andλ be as in Lemma 2.4.4. Then there is a nonzero scalar z∈Q(v)
such that

En1λ = zσ(M)(En1ω)M.

In particular, En1λ lies in the ideal ofIm(ι) generated by En1ω .

Proof The monomialM is equal to a strictly distinguished monomial

M′ = t ′mt ′m−1 · · ·t ′1.

After moving unnecessary idempotents inM to the right using Lemma 2.2.7, and
omitting the corresponding idempotents from the termst ′i , we may assume thatM
is of the form

M = tmtm−1 · · ·t11λ .

We will prove by induction onk≤ m that

(σ(t1)σ(t2) · · ·σ(tk))En(tktk−1 · · ·t1)1λ

is a nonzero multiple ofEn1λ ; the casek = m is the assertion of the Lemma. The
base case,k = 0, is trivial.

There are two cases to consider for the inductive step. The first case, which is
easier to deal with, is thattk is of the formEc

i for somec> 0. In this case, we have

σ(tk)Entk = Fc
i EnEc

i ,

which can be rewritten as
EnFc

i Ec
i

using the relations ofU(ĝln). (Note that we do not havei = n, becauseM does not
contain occurrences ofEn.) We now have

Fc
i Entktk−1 · · · t11λ = EnFc

i tk1µ tk−1tk−2 · · · t11λ

for a suitableµ ∈ Λ (n, r). The hypothesisM 6= 0 means that we haveµi+1 ≥ c,
so we may apply Lemma 2.2.7 (i) to replaceFc

i tk1µ by z1µ with z nonzero. The
proof is now completed in this case by the inductive hypothesis.

The second case is thattk is of the formFc
i for somec > 0. In this case, we

cannot havei = n or i = n−1 because of condition (ii) of Lemma 2.4.4. Suppose
for the moment thati 6= 1. Then the relations inU(ĝln) show that

Ec
i EnFc

i = EnEc
i Fc

i .
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We can then proceed as in the first case to show that

Ec
i Entktk−1 · · · t11λ = EnEc

i tk1µtk−1tk−2 · · · t11λ

= Enz′1µtk−1tk−2 · · · t11λ

wherez′ is nonzero. Here we have used Lemma 2.2.7 (ii), which is applicable
becauseM is nonzero andµi ≥ c. Again, we are done by induction in this case.

The remaining case is the possibility thattk = Fc
1 for somec> 0. The relations

in U(ĝln) show that

Ec
1EnFc

1 = Ec
1Fc

1 En,

and so we have

Ec
1Entktk−1 · · ·t11λ = Ec

1tkEn1µtk−1tk−2 · · ·t11λ .

BecauseFc
1 arises from a distinguished term, we haveµ2 = 0. By Lemma 2.2.6

(i), we have

Ec
1Fc

1 En1µ = Ec
1Fc

1 1µ ′En,

where againµ ′
2 = 0 (recall thatn≥ 3). Hence

Ec
1Entktk−1 · · ·t11λ = z′1µ ′Entk−1tk−2 · · ·t11λ .

Furthermore,z′ is nonzero. To see why, we recall that by condition (ii) of Lemma
2.4.4, there are no occurrences ofE1 or En or Fn in M and that by condition (iii),
all the occurrences ofF1 occur consecutively. Repeated applications of Lemma
2.2.6 then show thatµ ′

1 = λ1. Lemma 2.2.7 (ii) then applies again to yield

Ec
1Fc

1 1µ ′ = z′′1µ ′ ,

andz′′ is nonzero because by condition (iv) of Lemma 2.4.4,c≤ λ1−1< λ1 = µ ′
1.

Once again, the assertion follows by induction in this case.
Finally, we observe that since bothM andσ(M) avoid occurrences ofEn and

Fn, they lie in the subalgebra ofT corresponding toSv(n, r). This means thatM
andσ(M) lie in Im(ι), and the proof follows. ⊓⊔

Corollary 2.4.6 If λ ∈ Λ (n, r), the elements En1λ , 1λ Fn and1λ lie in the image
of ι .

Proof If λ1 = 0, thenEn1λ = 1λ Fn = 0 and the assertion is trivial. Otherwise, the
assertion follows by combining lemmas 2.4.3 and 2.4.5. ⊓⊔

Proof of Theorem 1.6.1 (modulo Lemma 2.4.4)By Lemma 2.4.2 and Corollary
2.4.6, the generators ofT listed in Lemma 2.4.1 all lie in Im(ι). This proves thatι
is surjective, and taken in conjunction with Proposition 2.3.11, we see thatι is an
isomorphism. This completes the proof of Theorem 1.6.1 (modulo Lemma 2.4.4).

⊓⊔
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2.5 Proof of Lemma 2.4.4

The only other ingredient needed to prove Theorem 1.6.1 is Lemma 2.4.4.

Definition 2.5.1 Let µ ,ν ∈ Λ (n, r). We say thatµ andν areZ-equivalentif they
become equal after their zero parts have been deleted. (In other words,µ andν
correspond to the same parabolic subgroup of the symmetric group.)

Lemma 2.5.2 Letλ ∈ Λ (n, r) with λ1 > 0.
(i) There exists a nonzero distinguished monomial M1 in the generators E2,E3,
. . . ,En−1, such that the occurrences of En−1 occur consecutively, satisfying

M1 = 1µ M11λ .

Here, µ = µ(λ) is such that (a)µ and λ are Z-equivalent and (b)ℓ(µ) (see
Definition 1.3.1) is of the form

(1,1, . . . ,1︸ ︷︷ ︸
µ1

,2,2, . . . ,2︸ ︷︷ ︸
µ2

, . . . ,k,k, . . . ,k︸ ︷︷ ︸
µk

).

Furthermore,µ1 = λ1, k≤ r and thusµk+1 = µk+2 = · · · = µr+1 = · · · = µn = 0.
(ii) Let µ be as in part (i) above, and letν be the unique element ofΛ (n, r) such
that (a)νa = µi+1 whenever

a = 1+
i

∑
j=1

µ j

for any0≤ i < r, and (b)νa = 0 for other values of a. (In particular,ν1 = µ1 = λ1,
and ν and µ are Z-equivalent.) Then there exists a nonzero distinguished mono-
mial M2 in the generators F2,F3, . . . ,Fn−2 satisfying

M2 = 1ν M21µ .

(iii) Let µ andν be as in (ii) above. Then for each1≤ i ≤ r we have

µi

∑
j=1

νb(i)+ j = µi = νb(i)+1,

where b(i) = ∑k<i µk. Summing over all i, this yields

r

∑
j=1

ν j = r,

and henceνr+1 = νr+2 = · · · = νn = 0.
(iv) Letν be as in part (ii) above. Then there exists a nonzero distinguished mono-
mial M3 in the generators F1,F2,F3, . . . ,Fn−2 satisfying

M3 = 1ωM31ν .

Furthermore, the occurrences of F1 occur consecutively, and there areλ1−1 oc-
currences of F1.
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NoteNote that in the above situation,µ andν are uniquely determined byλ .
For example, ifn = 9, r = 7 and

λ = (2,0,0,3,0,0,0,0,2),

then we have
µ = (2,3,2,0,0,0,0,0,0),

and
ν = ( 2,0︸︷︷︸

2

,3,0,0︸ ︷︷ ︸
3

, 2,0︸︷︷︸
2

,0,0).

In this case, we could take

M1 = 1µE2
3E2

4E2
5E2

6E2
7E2

8E3
2E3

31λ ,

M2 = 1νF3
2 F2

5 F2
4 F2

3 1µ ,

M3 = 1ωF1F4F2
3 F61ν .

Proof To prove (i), letλ ∈ Λ (n, r) be such thatλi = 0 andλi+1 = c > 0. Lemma
2.2.7 (i) implies thatEc

i 1λ is a nonzero element ofT, and iterated applications of
Lemma 2.2.6(i) show thatEc

i 1λ = 1ξ Ec
i , where

ξ j =





λi+1 if j = i,
λi if j = i +1,

λ j otherwise.

Repeated applications of this procedure can be used to move all the zero parts
of λ to the right. Sinceλ1 > 0 by assumption, we haveµ1 = λ1, and it is never
necessary to use an application ofE1. It is necessary to use applications ofEn−1
if and only if λn > 0, but in this case they may all be applied consecutively. Since
there are at mostr nonzero parts inλ1 and sincen > r, we havek ≤ r. We have
M1 6= 0 based on an inductive argument using Lemma 2.2.11. The other assertions
of (i) follow.

The claims in (ii) concerningν are routine apart from the assertion regarding
the distinguished monomial. The proof of (iii) then followsfrom the characteri-
zation ofν given in (ii). (The reader may find it helpful here to look at the note
preceding this proof.) The entriesνr+1,νr+2, . . . ,νn can effectively be ignored for
the rest of the proof.

The proof of the last assertion of (ii) follows similar linesto the proof of (i).
The main difference is that the aim is to move certain of the zero components ofλ
to the left. The basic step involvesµ ∈ Λ (n, r) such thatµi = c > 0 andµi+1 = 0,
in which case Lemma 2.2.7 (ii) shows thatFc

i 1µ is a nonzero element ofT, and
iterated applications of Lemma 2.2.6 (ii) show thatFc

i 1µ = 1ξ Fc
i , where

ξ j =






µi+1 if j = i,
µi if j = i +1,

µ j otherwise.
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Sinceν1 = µ1 = λ1 > 0 by the definition ofνa, no applications ofF1 are necessary.
The fact thatνn = 0 shows why no applications ofFn−1 are necessary. As before,
Lemma 2.2.11 shows whyM2 6= 0.

To prove (iv), observe thatν can be written as the concatenation of maximal
segments of the form

(νi ,0,0, . . . ,0︸ ︷︷ ︸
νi−1

).

Let us first deal with the case whereν1 = r. Here, the monomial may be given
explicitly as

M3 = 1ωF1
ν1−1F2

ν1−2 · · ·Fν1−2
2 Fν1−1

1 1ν .

This monomial is easily checked to be distinguished. In the general case, there
is a monomial in theFi corresponding to each of the maximal segments men-
tioned above, and monomials corresponding to distinct segments commute. When
these monomials are concatenated and flanked by 1ω and 1ν , we obtainM3. The
occurrences ofF1 all correspond to the segment containingν1, and the explicit for-
mula above shows that these occurrences are consecutive andthat there areλ1−1
of them. (This number may be zero.) As in the proof of (ii) above, the fact that
ωn = 0 explains why there are no occurrences ofFn−1. Also as above, Lemma
2.2.11 shows whyM3 6= 0. ⊓⊔

Proof of Lemma 2.4.4In the notation of Lemma 2.5.2, the required monomial is

M = 1ωM31ν M21µM11λ .

Properties (i)–(iv) of Lemma 2.4.4 follow from the various parts of Lemma 2.5.2.
SinceM1, M2 andM3 are nonzero,M is nonzero by Lemma 2.2.11.

This completes the proof of Lemma 2.4.4, and therefore of Theorem 1.6.1. ⊓⊔

2.6 An alternative presentation ofŜv(n, r)

Lusztig [16, Part IV] has defined a modified form of a quantizedenveloping alge-
bra, by replacing the zero part of the algebra with an infinitesystem of pairwise
orthogonal idempotents, acting on modules as weight space projectors. The mod-
ified form has a canonical basis with remarkable properties,similar to properties
of the canonical basis of the positive part of the original quantized algebra.

The following presentation of the algebraŜv(n, r), compatible with Lusztig’s
modified form ofU(ĝln), is equivalent with the presentation given in Theorem
1.6.1.

Theorem 2.6.1 Assume that n> r. OverQ(v), the algebrâSv(n, r) is isomorphic
with the associative algebra (with 1) given by the generators iλ (λ ∈ Λ (n, r)),
Ei ,Fi (1≤ i ≤ n) and relations

iλ iµ = δλ ,µ iλ ; ∑
λ∈Λ(n,r)

iλ = 1; (R1)
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Ei iλ =

{
iλ+αi

Ei if λi+1 > 0,

0 otherwise;
(R2)

Fi iλ =

{
iλ−αi

Fi if λi > 0,

0 otherwise;
(R3)

EiF j −F jEi = δi, j ∑
λ∈Λ(n,r)

[λ j −λ j+1]iλ (R4)

along with relations (Q6)–(Q9) of Definition 1.4.1. Here we regard weights as
infinite periodic sequences, as in Section 2.2 above.

Proof Let A be the algebra defined by the presentation of the theorem, andlet T
be the algebra defined by the presentation of Theorem 1.6.1.

By Definition 2.2.2, Lemma 2.2.4, and Lemma 2.2.6 the elements 1λ (λ ∈
Λ (n, r)), Ei ,Fi (1≤ i ≤ n) of T satisfy the relations (R1)–(R3). TheEi ,Fi (1≤ i ≤
n) already satisfy relations (Q6)–(Q9) by assumption. By applying Remark 1.6.4
to the results in [7, Theorem 3.4] we see that (R4) holds as well for all 1 ≤ i, j < n.
If one or both ofi, j is equal ton, then we choose a different embedding ofSv(n, r)
in T, one which includes the values ofi, j in question, and again apply Remark
1.6.4 to the results in [7, Theorem 3.4] to see that (R4) holdsin that case as well.
In T we have by Lemma 2.2.4 the equalities

Ki = Ki ∑
λ

1λ = ∑
λ

vλi 1λ ; K−1
i = K−1

i ∑
λ

1λ = ∑
λ

v−λi 1λ (∗)

for any 1≤ i ≤ n, where the sums are taken over allλ ∈ Λ (n, r). Hence, the
elements 1λ (λ ∈ Λ (n, r)), Ei ,Fi (1≤ i ≤ n) generateT, and the map

iλ → 1λ , Ei → Ei , Fi → Fi

defines a surjective quotient map fromA ontoT.
On the other hand, in the algebraA one defines elementsKi = ∑λ vλiiλ , K−1

i =

∑λ v−λiiλ . By following the same line of argument as in the proof of [7, Theorem
3.4], these elements, along with the elementsEi , Fi for 1≤ i < n, satisfy the defin-
ing relations (Q1)–(Q9), (Q15), (Q16) ofT. It remains to show that the elements
En,Fn also satisfy those relations (along with theKi ,K

−1
i ). Only relations (Q3),

(Q4), and (Q5) are in question since the other relations either hold by assumption
or do not involve the elementsEn,Fn.

We now verify that relation (Q3) holds forEn. By definition ofKi we have

KiEn = ∑
λ

vλi iλ En

and by relation (R2) this takes the form

KiEn = ∑
λ

vλi Eniλ−αn

where, for convenience of notation, we take both sums over the set of allλ ∈ Zn

satisfying∑λi = r, with the understanding thatiλ is interpreted to be 0 in case
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any part ofλ is negative. (This makes all the sums in question finite.) Nowreplace
λ −αn by µ ∈ Zn and the above gives relation (Q3) forEn.

The proof that relation (Q4) holds forFn is similar.
Finally, we verify that (Q5) holds. By the given relation (R4) we have

EiF j −F jEi = δi j ∑
λ

[λ j −λ j+1]iλ

and this gives 0 unlessi = j , so (Q5) holds in casei 6= j . Assuming thati = j , the
above sum becomes

EiFi −FiEi = ∑
λ

vλi−λi+1 −v−λi+λi+1

v−v−1 iλ

=
(∑λ vλiiλ v−λi+1iλ )− (∑λ v−λiiλ vλi+1iλ )

v−v−1

=
(∑λ vλiiλ )(∑λ v−λi+1iλ )− (∑λ v−λiiλ )(∑λ vλi+1iλ )

v−v−1

using the orthogonality of the system of idempotents. By thedefinition of the
Ki ,K

−1
i this proves (Q5) in casei = j .

We claim that the elementsKi ,K
−1
i , Ei ,Fi (for 1 ≤ i ≤ n) generateA. To see

this, it suffices to show that theKi ,K
−1
i generate the zero part ofA (the span of the

iλ ). From the definition ofKi andK
−1
i it follows that

K j iλ = vλ j iλ ; K
−1
j iλ = v−λ j iλ

and thusK j = K j ∑λ iλ = ∑λ vλ j iλ andK
−1
j = K

−1
j ∑λ iλ = ∑λ v−λ j iλ , where

the sums are over allλ ∈ Λ (n, r). Hence it follows that
[
K j
t

]
=

t

∏
s=1

K jv−s+1−K
−1
j vs−1

vs−v−s

=
t

∏
s=1

(∑λ vλ j−s+1
iλ )− (∑λ v−λ j+s−1

iλ )

vs−v−s

=
t

∏
s=1

∑
λ

vλ j−s+1−v−λ j+s−1

vs−v−s iλ

= ∑
λ

t

∏
s=1

vλ j−s+1−v−λ j+s−1

vs−v−s iλ

= ∑
λ

[
λ j
t

]
iλ

where we have again made use of the orthogonality of the idempotents to inter-
change the product and sum. From this and the othogonality ofidempotents it
follows that for anyµ ∈ Λ (n, r) we have

[
K1
µ1

]
· · ·
[
Kn
µn

]
=

n

∏
j=1

(

∑
λ

[
λ j
µ j

]
iλ

)
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= ∑
λ

[
λ1
µ1

]
· · ·
[

λn
µn

]
iλ

whereλ runs over the setΛ (n, r) in the sums. The only non-zero term in the last
sum is whenλ = µ , so [

K1
µ1

]
· · ·
[
Kn
µn

]
= iµ .

This proves the claim. (The reader should refer to [16,§1.3] for definitions and
basic properties of quantized binomial coefficients used here.)

We have shown that the elementsKi ,K
−1
i , Ei , Fi (for 1≤ i ≤ n) generate the

algebraA, and moreover satisfy all the defining relations for the algebra T. It
follows that the map

K±1
i → K

±1
i , Ei → Ei , Fi → Fi

is a surjective quotient map fromT ontoA.
Now consider the composite surjective mapT → A → T. This is the clearly

identity onEi ,Fi . Moreover, by equations (∗) above the composite map takesKi to
∑λ vλi 1λ = Ki . Similarly, it takesK−1

i to itself. Thus the composite is the identity,
and thus each quotient mapT → A andA→ T is an algebra isomorphism. ⊓⊔

3 The classical case

All of the results of this paper have analogues in the casev = 1. The proofs run
parallel to the arguments given here, but are often easier. We will outline the main
results here, and leave it to the reader to fill in the details.

3.1 The affine Schur algebra

The analogue of Definition 1.3.4 is the following

Definition 3.1.1 The affine Schur algebrâS(n, r) overZ is defined by

Ŝ(n, r) := EndŴ


 ⊕

λ∈Λ(n,r)

xλŴ


 ,

wherexλ = ∑w∈Ŵλ
w.

There is a basis of̂S(n, r) similar to the basis of̂Sq(n, r) given in Theorem
1.3.6. The details are left to the reader.

Definition 3.1.2 The associative, unital algebraU(ĝln) overQ is given by gener-
ators

ei , fi ,Hi (1≤ i ≤ n)
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subject to the relations

HiH j = H jHi ; (q1)

Hiej −ejHi = ε+(i, j)ej ; (q2)

Hi f j − f jHi = ε−(i, j) f j ; (q3)

ei f j − f jei = δi j (H j −H j+1); (q4)

eiej = ejei if i and j are not adjacent; (q5)

fi f j = f j fi if i and j are not adjacent; (q6)

e2
i ej −2eiejei +eje

2
i = 0 if i and j are adjacent; (q7)

f 2
i f j −2 fi f j fi + f j f 2

i = 0 if i and j are adjacent. (q8)

As in Definition 1.4.3 the notion of adjacency takes place in the Dynkin diagram
of typeÂn−1, so we read indices modulon in this definition.

This algebra is a Hopf algebra in a natural way, and the quotient of U(ĝln)
by the kernel of its action on a suitably defined tensor space is isomorphic as a
Q-algebra toQ⊗Z Ŝ(n, r).

3.2 Main results

The analogue of Theorem 1.6.1 is the

Theorem 3.2.1 Let n> r, and identifyŜ(n, r) with the quotient of U(ĝln) acting
on tensor space. OverQ, the affine Schur algebrâS(n, r) is given by generators
ei , fi ,Hi (1 ≤ i ≤ n) subject to relations (q1) to (q8) of Definition 3.1.2 (reading
indices modulo n), together with the relations

H1 + · · ·+Hn = r; (q9)

Hi(Hi −1)(Hi −2) · · ·(Hi − r) = 0. (q10)

There is also an equivalent version in terms of idempotents,analogous to The-
orem 2.6.1, which we now state.

Theorem 3.2.2 Assume that n> r. OverQ, the algebrâS(n, r) is isomorphic with
the associative algebra (with 1) given by the generatorsiλ (λ ∈ Λ (n, r)), ei , fi
(1≤ i ≤ n) and relations

iλ iµ = δλ ,µ iλ ; ∑
λ∈Λ(n,r)

iλ = 1; (r1)

ei iλ =

{
iλ+αi

ei if λi+1 > 0,

0 otherwise;
(r2)

fi iλ =

{
iλ−αi

fi if λi > 0,

0 otherwise;
(r3)
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ei f j − f jei = δi, j ∑
λ∈Λ(n,r)

(λ j −λ j+1)iλ (r4)

along with relations (q5)–(q8) of Definition 3.1.2. Here we regard weights as infi-
nite periodic sequences, as in Section 2.2 above.

These relations are obtained from those in Theorem 2.6.1 by settingv = 1.
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