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Abstract We obtain a presentation of certain affiqpgSchur algebras in terms of
generators and relations. The presentation is obtaineddipgmore relations to
the usual presentation of the quantized enveloping algeflisgpe affinegl,,. Our
results extend and rely on the corresponding result fogtBehur algebra of the
symmetric group, which were proved by the first author andyGrato.
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Introduction

LetV’ be a vector space of finite dimensionOn the tensor spag¥’)“" we have
natural commuting actions of the general linear grélyV’) and the symmetric
group.#;. Schur observed that the centralizer algebra of each aetjoals the
image of the other action in EQ/’)®"), in characteristic zero, and Schur and
Weyl used this observation to transfer information aboetr#presentations of;
to information about the representationsG@f(V’). That this Schur-Weyl dual-
ity holds in arbitrary characteristic was first observed4h plthough a special
case was already used in [2]. In recent years, there havaaggpearious applica-
tions of the Schur—Weyl duality viewpoint to modular regnetations. The Schur
algebrass(n,r) first defined in [9] play a fundamental role in such interasio
Jimbo [13] and (independently) Dipper and James [6] obsktlvat the ten-
sor spacgV’)®" has ag-analogue in which the mutually centralizing actions of
GL(V') and.#; become mutually centralizing actions of a quantized emiefp
algebraJ(gl,) and of the lwahori-Hecke algebgg’(.#;) corresponding ta;. In
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this context, the ordinary Schur algelS@n,r) is replaced by the-Schur algebra
Sqy(n,r). Dipper and James also showed that gichur algebras determine the
representations of finite general linear groups in non-definharacteristic.

An affine version of Schur-Weyl duality was first describe{Bij A different
version, in which the vector spa®€ is replaced by an infinite dimensional vector
spaceV, is given in [11], and we follow the latter approach here ha affine (type
A) setting, the mutually commuting actions are of an affinentjgzad enveloping
algebraU(gl,,) and an extended affine Hecke algeb#4(W) corresponding to
an extended affine Weyl group/ containing the affine Weyl grou@/ of type
Ar_1. The affineg-Schur aIgebreSq(n r) in this context, which is also infinite
dimensional, was first studied in [11], [17], and [20].

Recently, a new approach to Schur algebras or tiraimalogues was given in
[7], where it was shown that they may be defined by generatatsedations in a
manner compatible with the usual defining presentationegtiveloping algebra
or its corresponding quantized enveloping algebra. Thpqag of this paper is to
extend that result to the affine case — that is, to describaffime=g-Schur algebra
%(n,r) by generators and relations compatible with the defininggmtation of

U(gl,). This result is formulated in Theorem 1.6.1, under the agsiom thatn >

r. An equivalent result, which describes the affip8chur algebra as a quotient of
Lusztig’s modified form of the quantized enveloping algeisa@iven in Theorem
2.6.1. These results depend on a different presentatiso,\vallid forn > r, of
the g-Schur algebra given in [11, Proposition 2.5.1]. A diffearapproach to the
results of this paper seems to be indicated for the nase.

The organization of the paper is as follows. In Section 1 we giecessary
background information, and formulate our main result. éctn 2 we give the
proof of Theorem 1.6.1, and we also give, in Section 2.6, lfegraative presenta-
tion mentioned above. Finally, in Section 3 we outline thalagous results in the
classical case, when the quantum parameter is speciatiZed t

After we submitted this paper, McGerty informed us that heihdependently
proved Theorem 2.6.1 using different methods; see [19].

1 Preliminaries and statement of main results

Our main result, stated i¢lL.6, is a presentation by generators and relations of the
affineg-Schur algebra. In order to put this result in context, wéene\some of the
definitions of the algebra that have been given in the liteeat

1.1 Affine Weyl groups of typ&

The affine Weyl group will play a key role, both in our definitgand our methods
of proof, so we define it first.

The Weyl group we consider in this paper is that of tpe;, where we intend
r > 3. This corresponds to the Dynkin diagram in Figure 1.1.1.

The number of vertices in the graph in Figure 1.1.%,iss the top vertex
(numbered) is regarded as an extra relative to the remainder of thengkalpich
is a Coxeter graph of typ&, 1.
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O—O0—O0—O-----

Fig. 1.1.1 Dynkin diagram of typed,_;

We associate a Weyl grouy)/ :W(K,_l), to this Dynkin diagram in the usual
way (asin[12§2.1]). This associates to nodef the graph a generating involution
s of W, wheressj = s;s if i andj are not connected in the graph, and

SSjS = SjSS;j

if i and j are connected in the graph. Fog Z, it is convenient to denote by

the congruence class bfmodulor, taking values in the s€tl,2,...,r}. For the

purposes of this paper, it is helpful to think of the grajpas follows, based on
a result of Lusztig [15]. (Note that we write maps on the rigiien dealing with

permutations.)

Proposition 1.1.2 There exists a group isomorphism from W to the set of permu-
tations ofZ satisfying the following conditions:

(i+rw=()w+r (@)

t;(t)w = t;t (b)

such that sis mapped to the permutation

t if T 40,0141,
t—t—1 iff=i+1,
t+1 ift=i,

forallt € Z.

For reasons relating to weight spaces which will becomer d¢¢gar, we con-
sider a larger groul/ of permutations of.

Definition 1.1.3 Let p be the permutation of takingt tot+ 1 for all t. Then

the group\ﬂl is defined to be the subgroup of permutationZafenerated by the
groupW andp.

As will become clear later, the point gfis that conjugation by will corre-
spond to a graph automorphism of the Dynkin diagram givenolgtion by one
place.

Proposition 1.1.4 (i) There exists a group isomorphism frakhto the set of per-
mutations ofZ satisfying the following conditions:

(i+rw=(Hw+r (@)
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trZ(t)W = tit modr. (b)

(i) Any element 8V is uniquely expressible in the fopaw for ze Z and we W.
Conversely, any element of this fgrm is an elemeWy of
(i) Let S= . be the subgroup aV generated by

{s1,%,....5-1}.

Let Z be the subgroup ot consisting of all permutations z satisfying

(t)z=t modr

for allt. ThenZ'" = Z, Z is normal inW, andW is the semidirect product of S and
Z.

Proof The three parts are proved in [11, Proposition 1.1.3, Carpll.1.4, Propo-
sition 1.1.5] respectively. ad

It is convenient to extend the usual notion of the length oelement of a
Coxeter group to the groly in the following way.

Definition 1.1.5 Forw € W the lengttY(w) of wis the length of a word of minimal
length in the group generatagsof W which is equal tav. The lengthf(w/), of a

typical elementv = pw of W (wherez € Z andw € W) is defined to be(w).

When the affine Weyl group is thought of in the above way, teilfar no-
tions of length and distinguished coset representativesbmaadapted from the
corresponding notions for Coxeter groups.

Definition 1.1.6 Let I1 be the set of subsets &= {s,%,...,5}, excludingS

itself. For eachit € 1, we define the subgrouﬁ/,T of W to be that generated by
{s € mi}. (Such a subgroup is called a parabolic subgroup.) We witietomes

write Wy for W;; to emphasize that it is a subgroup Wt Let 1’ be the set of
elements of T that omit the generatcy.

All the subgroupaV;; are subgroups o/, and are parabolic subgroups in the
usual sense of Coxeter groups. Furthermore, each&ihisomorphic to a direct
product of Coxeter groups of typk(i.e., finite symmetric groups) corresponding
to the connected components of the Dynkin diagram obtaifted amitting the
elements; that do not occur imt. We will appeal to these facts freely in the sequel.

Definition 1.1.7 Letre I1. The subse®, of W is the set of those elements such
that for anyw € Wy andd € 2y,

¢(wd) = £(w) + £(d).

We call 7, the set of distinguished right coset representativ&@,pih W.
The subsetZ;! is called the set of distinguished left coset represerdaif

Wy in W; elementsd € 2,1 have the property tha{dw) = ¢(d) -+ ¢(w) for any
we W
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Proposition 1.1.8 (i) Let re T and we W. Then w= w,w™ for a unique w; €
W;; and W' € Z..

(ii) Let77 € 1T and we W. Then w= w™ wyy for a unique vy € Wiy and W* € 2.
(i) Letm,m € M. The setZy , '= P N Py! is an irredundantly described

set of doubléNy, “Wy, -coset representatives, each of minimal length in its deubl
coset.

Proof See [11, Propositions 1.4.4, 1.4.5]. ad

1.2 Affine Hecke algebras of typke

We now define the extended affine Hecke algefa= %”(VA\/) of type A. The

Hecke algebra is g-analogue of the group algebraWf, and is related taV in
the same way as the Hecke algebfd.#;) of type A is related to the symmetric

group.#;. In particular, one can recover theAgroup algebrkf\ldﬁy replacing the
parameteq occurring in the definition of#’ (W) by 1.

Definition 1.2.1 The affine Hecke algebra” = (W) overZ[q,q 1] is the as-
sociative, unital algebra with algebra generators

{TS1, s >TSr} U {TP,Tp_l}
and relations
T2=(q-DTs+aq, @
TsTy = Ty Ts if sandt are not adjacent in the Dynkin diagram (2)
TsTi Ts = T TsT; if sandt are adjacent in the Dynkin diagram 3)
Tl T, T =Ts. (4)
In relation (4), we interpred . 1 to means;.

The algebraz’ has a better known presentation, known as the Bernstein pre-
sentation, but this is not convenient for our purposes. Thuvalence of the two
presentations is well known, and a proof may be found, forgte, in [11, Theo-
rem 4.2.5]. However, it will be convenient to have the follogrmodified version
of the presentation in Definition 1.2.1.

Lemma 1.2.2 The affine Hecke algebra¢’ = .7#°(W) overZ[q,q 1] is the asso-
ciative, unital algebra with algebra generators

{T%,“;QA}u{n%];ﬂ
and relations
T¥=(@-Ts+q, (1)
ToTs = Tg Ts if [i— j| > 1, @)
TsTsTs =T T Ts, if [ — j| = 1, (3)
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TPTS+1Tp_1 =Tgifl1<i<r-1, @)
T, =Tqif1<i<r-1, 5)

Proof It is clear that relations (J~(5) are consequences of relations (1)—(4). For
the converse direction, we defilig .= TstlTp‘l; the remaining cases of relations

(1)—(4) may then be obtained from relation§{5) by conjugating byT, or by
T, O
p

Definition 1.2.3 Letw € W. The elemenTy, of 2# (W) is defined as
'|'Sl T

wheres;, --- S, is a reduced expression for (i.e., one withm minimal). (This is
well-defined by standard properties of Coxeter groups.)

If W €W is of form p*w for w € W, we denote byl,, the elemenT;T,,. (This
is well-defined by Proposition 1.1.4 (ii).)

Proposition 1.2.4 (i) A freeZ[qg,q~Y|-basis for.”# is given by the sefT, : w ¢
W1
(i) As aZ[q,q']-algebra,# is generated byg[, Ty and T, .

Proof See [11, Proposition 1.2.3, Lemma 1.2.4]. ad

1.3 The affineg-Schur algebra as an endomorphism algebra

We first present the definition of the affiqeSchur algebra as given in [192].

Definition 1.3.1 A weight is a compositiod = (A1,Ay,...,An) of r into n pieces,
that is, a finite sequence of nonnegative integers whose sum(There is no
monotonicity assumption on the sequence.) We denote tiogweights byA (n,r).
Ther-tuple¢(A) of a weightA is the weakly increasing sequence of integers
where there ar@; occurrences of the entry
The Young subgroup”, € .% CW C W is the subgroup of permutations of
the set{1,2,...,r} that leaves invariant the following sets of integers:

{1,2,...,)\1},{)\1+1,)\1+2,...,)\1+)\2},{)\1+)\2+1,...},....

The weightw is given by then-tuple

Remark 1.3.2 The Young subgroup?, C .% can be thought of as a groi,
for someA € 1’. Note, however, that different compositioAscan give rise to
canonically isomorphic groups. Also note that we requiter for w to exist.
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Definition 1.3.3 Let A € 1. Fort € Z, the parabolic subgrou‘ﬁ/,\H is the one

generated by those elemests wherei is such thas lies inW, . We also use the
notation%, ,; with the obvious meaning.
The elemenk, ; € 5 is defined as

Xpit = Z Tw-
WeW) 4t

We will write X, for Xy ,o.

Definition 1.3.4 The affineg-Schur aIgebréASqm,r) overZ[qg,q~] is defined by
S =Endy [ P x|,
Aen(nyr)
wheres# = #(W).

There is a basis fciABq(n, r) similar to Dipper and James’ basis for the ordinary
g-Schur algebra.

Definition 1.3.5 Letd € W be an element ¥, - Write d = p“c (as in Proposi-
tion 1.1.4 (ii)) withc € W. Then the element

@', € Hom(x, 2 (W), x, 7 (W)
is defined as

¢j’7u(xu):: z xATpZTcd/
d’E@vmW‘u

Z Z
= Z ToXr+zTed = E ToTw= Z Tw
d'e 2y Wy, weW) W, weW, dW,

wherev is the composition of corresponding to the standard Young subgroup
of W.

Theorem 1.3.6 (i) A freeZ[qg,q 1]-basis foréqm, r) is given by the set
{@ i A ueA(nT), de Dy )
(ii) The set of basis elements

{(pj’,u A HEA(NT),dEAND) )

spans a subalgebra cfﬁq(n,r) canonically isomorphic to the g-Schur algebra

Sy(n,r).
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(iii) The set of basis elements
{#,0:deW)
spans a subalgebra canonically isomorphic to the Heckelmge%”(\/AV), where
@3, is identified with .
Proof See [11, Theorem 2.2.4] for part (i), and [11, Propositidh3].for parts
(i) and (jii). ad
Note again that parts (ii) and (iii) of Theorem 1.3.6 only ggpn >r.

1.4 Quantum groups and tensor space

The affineg-Schur algebras are closely related to certain quanturmpgr{dopf
algebras). The following Hopf algebra is crucial for our pasges.

Definition 1.4.1 The associative, unital algebtigl,,) overQ(v) is given by gen-
erators
E,F (1<i<n-1); K,K™ (1<i<n)

subject to the following relations:

KiKj = KjK;, (Q1)

KiK't =K1K =1, (Q2)

KiE; :Vg+(i’j)EjKi, (Q3)

KiFj = v WDFK;, (Q4)

KiKi 1 =K 'Kira
EFj—FE =& —

11 J aj V—V_l ’ (QS)
EEj=E;E if i and]j are not adjacent, (Q6)
FiFj =FjF if i and]j are not adjacent, Q7
E’E; - (v+Vv )EEE +EE?=0 ifiandjare adjacent,  (Q8)
F’F— (v+v HFRF+FRF?=0 ifiandj are adjacent. (Q9)

Here, we regardand | as “adjacent” ifi and j index adjacent nodes in the Dynkin
diagram of typeA,_1. In the relationsj and j vary over all values of the indices
for which the relation is defined. Also,

1 if j=i;
et(i,j)i={ -1 ifj=i—-1;
0 otherwise;
and o
1 if j=1—-1,
e (i,j)=¢-1 ifj=i;

0 otherwise
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where we writea for a € Z to denote the residue class@in the residue class
ring Z/nZ. The residue class notation has no effect in the above definivhere
indices are restricted to the range .1,n— 1. However, the notation is important
in the next two definitions.

The following Hopf algebra is a quantized affine envelopilyghra associated
with the affine Lie algebral,,.

Definition 1.4.2 The associative, unital aIgeUrt(gT(\n) overQ(v) is given by gen-
erators

EiaFI,KiaKi_l
(where 1<i < n) subject to relations (Q1) to (Q9) of Definition 1.4.1 (reayli
indices modul).
In this definition, the notion of “adjacent” in relations (R{Q9) must now be

interpreted in the Dynkin diagram of ty@e,_1. More preciselyj and j are to be
regarded as “adjacent” ifand j index adjacent nodes in the Dynkin diagram of

type,&n,l. Note that, j index adjacent nodes if and onlyiif- j = +1 (modn).

In [11], a larger Hopf algebra is considered. It is an extendersion of the
quantized affine algebfd(gl,) considered in Definition 1.4.2.

Definition 1.4.3 The associative, unital algebﬁ:@m) overQ(v) is given by gen-
erators

Ei ) Fla Ki ) Kiil, Ra R71

(where 1<i < n) subject to relations (Q1) to (Q9) of Definition 1.4.1 (reagli
indices modul), together with the relations

RRI=RR=1, (Q10)
R KR=K;, (Q11)
—1 1p__ 1
RIKFR=K*, (Q12)
R'E+R=E, (Q13)
R'F+R=F. (Q14)

The following result was proved in [11, Theorem 3.1.10].

Theorem 1.4.4 The aIgebraU( n) is @ Hopf algebra with multiplicatiom, unit
n, comultiplicationA, counite and antipode S. The comultiplication is defined by

Al)=1®

A(E) = E.@K. Kii+1®E,

AR) =K 'Ki1oFR+FRel,

A(X)=X@X for X € {Ki,K 1, R R}
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The counit is defined by

e(E) =¢(R) =0,

eK)=¢eK ) =¢e(R=e(RYH=1
The antipode is defined by

S(E) = —EK; *Kii1,
S(R) = —KiK{ 1R,
SKKi) =K,

SKK™) =K,
SR =R,

SR =R

The unit satisfieg (1) = 1y.

Note that the usual Hopf algebra structureWyl,,) andU(gl,) is obtained by
restricting the operations of Theorem 1.4.4 above.
LetV be theQ(v)-vector space with basifg : t € Z}. This has a natural

—

U(gl,,)-module structure as follows.

Lemma 1.4.5 There is a left action olfJA(gT[;) onV defined by the conditions
Eg.1=qifi=t modn,
Eig.1=0ifi #t modn,
Fa=eq.1ifi=t modn,
Fea=0ifi 2t modn,
Kig =vaifi=t modn,
Kig=qifi A2t modn,
Re =&.1.
Proof See [11, Lemma 3.2.1]. O

SinceU(gT[;) is a Hopf algebra, the tensor product of t@@g/[;)—modules has

—

a naturalU(gl,)-module structure via the comultiplicatiah

Definition 1.4.6 The vector spacé®" has a naturaAU(gT[;)—module structure given
by

ux=A(u)"x
We call this moduleéensor spaceThe weightA = (A4,...,Ay) € A(n,r) of a basis
element

Q1®Q2®"'®Qr
of V&' is given by the condition

Ai={j:tj=i modn}|

fori=1,...,n. TheA-weight spacey,, of V®" is the span of all the basis vectors
of weightA.
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Henceforth, we will always assume that= v2, and regard)(v) as an algebra
over ./ = Z[q,q~%] by means of the ring homomorphismi — Q(v) such that
q—Vaqgl—ov2

The following result about the affirggSchur algebra, which will be used fre-
guently in the sequel, was proved in [11, Theorem 3.4.8].

Theorem 1.4.7 The quotient otAJ(gT[;) by the kernel of its action on tensor space
is isomorphic as &)(v)-algebra to the algebr&(v) ®. Sq(n,r).

There is a corresponding result for the finig&chur algebra. This was intro-
duced in [1]; see [8] or [10] for more details.

Theorem 1.4.8 Let V' be the submodule of V spanned by thdoe 1 < j <n.
Then the quotient df)(gl,,) by the kernel of its action ofV')*" is isomorphic
as aQ(v)-algebra to the algebré)(v) ® ., Sy(n,r). We denote the corresponding
epimorphism fronJ(gl,,) to Q(v) @, S4(n,r) by a.

Definition 1.4.9 For convenience of notation, we shall henceforth denoﬁ,by, r

the algebraQ(v) ®M/§qm, r) and byS,(n,r) its finite analogué(v) ® ., S4(n,r).
We may refer to these algebras as the affw8zhur algebra andSchur algebra,
respectively.

It will be useful in the sequel to consider the weight spadeS,n,r) as right
Q(v) ® 4 () modules. The following result is useful in such a context.

Lemma 1.4.10Let1 <i; <ip <---<iy <n,and letA € A(n,r) be such thai;
is the number of occurrences of j in the sequefiggy, . . .,ir). Then theA -weight
space of V' is generated as a righ®(v) ® ., 7 (.#;)-module by the element

6,08,0---Q6.

Proof This is a well known result, which can be seen for example byguthe
definition of S,(n,r) together with the isomorphism, given in [8], between tensor
space and Dipper and Jameg-:tensor space” (see [6]). a

Although (V/)®" is not aU(E[;)—module, we have the following

Lemma 1.4.11 The action of & U(ng) on V*" is determined by its action on the
subspacégV’)®".

Proof This is part of [11, Proposition 3.2.5]. ad

1.5 Lusztig's approach

In §1.5 we review the approach to the affip&Schur algebra used by Lusztig [17],
McGerty [18] and others. We start by recalling McGerty’s dgifons from [18,

§2].
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Let V, be a free rank module overk[e,e—l], wherek is a finite field ofq
elements, and is an indeterminate.

Let #" be the space ofi-step periodic lattices, i.e. sequendes= (L;)icz
of lattices in our free modul¥; such that; C Lj, 1, andL;_, = €L;. The group
G = Aut(V) acts on.#" in the natural way. LeS,, be the set of nonnegative
integer sequences )icz, such thaiey = a.n and s ;& =r, and let&, , be
the set ofZ x Z matricesA = (& j )i jez With nonnegative entries such thag =
&+nj+nandyicin jez @, =Tr. The orbits ofG on Z" are indexed by, where
L is in the orbit.%, corresponding ta if a = dim(L;/L;j_1). The orbits ofG on
F"x Z" are indexed by the matric&3;,,, where a paiL,L’) is in the orbit
Op corresponding té\ if

) /
a = dim )
’ (Li_lﬂLj)+(Li ijfl)

For A € Ginn letr(A),c(A) € &rpn be given byr(A)i = ¥ jcza,j andr(A)j =
2iczdij-

Simjilarly let " be the space of complete periodic lattices, that is, sea@senc
of latticesL = (L;) such that;; C Lj1, Li_r = €L, and dink(L;/Lj—1) = 1 for all
i€Z.Letbp=(...,1,1,...). The orbits ofG on &' x #" are indexed by matrices
A € Gy nn Where the matriXA must have (A) = c(A) = bo.

Let®; g, Hrq andZ; q be the span of the characteristic functions of@erbits
on ZF"x F", B x B and.F" x A" respectively. Convolution maké% q and
$rq into algebras and; into al; q—$Hrq bimodule. FoiA € &, set

da= Z ajjay.
i>k, j<l,1<i<n

Let{ea: Ac S nn} be the basis dll, 4 given by the characteristic function of the
orbit corresponding t@, and let{[A]: A€ &;nn} be the basis ofl,q given by
Al = q 9%/2es. Whenn = r, the subset of either basis spanned by all monomial
matricesA spansf; .

All of these spaces of functions are the specialization-at,/q of modules
overw/ = 7|V, v‘l], which we denote b, £, and ¥, respectively; herg is an
indeterminate.

Proposition 1.5.1 (Varagnolo—Vasserot)The.sr -algebra?|; is naturally isomor-
phic to the affine g-Schur algebtﬁ,(n,r) of Definition 1.3.4. Furthermore, the
isomorphism may be chosen to identify the basis of Definltidrs with the basis
{eA Ae Gr,n,n}-

Proof The necessary isomorphism is the mgiven in [20, Proposition 7.4 (a)].
O

We will also need theanonical basis{{A}: A€ S;nn}, foré,(n,r). This is
related to the basi§A|: A€ & nn} in a unitriangular way: we have

{A} = Mpy A[A],
Ar:Ai<A
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where< is a certain natural partial order and tfig, o are certain Laurent polyno-
mials (similar to the famous Kazhdan-Lusztig polynomigls of [14]) satisfying
[aa = 1. The reader is referred to [174] for full details, or to [11,§2.4] for a
more elementary construction.

An elementA € &,y is said to beaperiodicif for any p € Z\{0} there exists
k € Z such thaty ;. p = 0. Let&Fh  be the set of aperiodic elementsdip, n.

Theorem 1.5.2 (Lusztig) Under the identifications of Theorem 1.4.7, the subal-
gebraU(gl,) of U(gl,,) projects to theQ(v)-span of the elements

{{A}: A€ G?ﬁ’n .
Proof Thisis [17, Theorem 8.2]. O

Remark 1.5.3 Theorem 1.5.2 is not true if we replace the canonical basniey
of the other two bases so far discussed.
If we haven > r, elementary considerations show that every eleme6t.af,

is aperiodic. This means that the subalgebrﬁ,(xﬁ, r) described in Theorem 1.5.2

is in fact the whole oﬁ,(n, r), so that we may refer to the algebra of Theorem 1.5.2
as “the affineg-Schur algebra” without confusion. We will concentrate loa tase
n > r in this paper.

1.6 Main results

Our main aim is to prove the following

Theorem 1.6.1Let n>r, and identifyé,(n,r) with the quotient oU(E[;) de-
scribed in Theorem 1.5.2 (see Remark 1.5.3). @¥@n, the affine v-Schur alge-
bra S,(n,r) is given by generatorsiEF.,Ki,Ki‘1 (1 <i € n) subject to relations
(Q1) to (Q9) of Definition 1.4.2 (reading indices modulo rogether with the
relations

KiKo---Kp =V (Q15)
(Ki = 1)(Ki = V) (Ki —=V?) -+ (Ki =V') = 0. (Q16)
The corresponding result in finite typewas proved by the first author and A.
Giaquinto. We will appeal to it repeatedly in the sequel.

Theorem 1.6.2 IdentifyS,(n, r) with the quotient obJ(gl,,) described in Theorem
1.4.8. OverQ(v), the v-Schur algebr&,(n,r) is given by generators;B (1 <
i<n-1)and K,Ki‘l (1 <i < n) subject to relations (Q1) to (Q9) of Definition
1.4.1, together with the relations
KiKp- - Kp = V'
(K — 1) (Ki =) (Ki =V?) -+ (Kj = V') = 0.

Proof Thisis [7, Theorem 2.1]. a
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Definition 1.6.3 For now, we will denote byT the Q(v)-algebra given by the
generators and relations of Theorem 1.6.1, and we will @eti corresponding

epimorphism fromU(gm) to T by B. The main aim is thus to show that is
isomorphic taS,(n,r).

Remark 1.6.4 There is an obvious isomorphism between the algebra givémeby
generators and relations of Theorem 1.6.2 and the subalgédr generated by
the images of the thig;, F;, K; andKjfl, where I<i < nand 1< j < n. This means

that if a relation ing,(n,r) involving theE;, i andK; avoids all occurrences of
E, andF, for some 1< a < n, then by Theorem 1.6.2 and symmetry, the relation
is a consequence of relations (Q15) and (Q16).

The following result establishes a natural surjection frorto §,(n,r), and
our main task in proving Theorem 1.6.1 will be to show thas timap is an iso-
morphism, in other words, that relations (Q15) and (Q16)safécient.

Proposition 1.6.5 Relations (Q15) and (Q16) of Theorem 1.6.1 holcﬁi(ln,r),
and thereforeS,(n,r) is a quotient of the algebra T . (We denote the corresponding
epimorphism by : T — S,(n,r).)

Proof Using the comultiplication ohJ(g[;), it may be easily checked that
KiKz - Kp—V'

and
(Ki — 1) (Ki = V) (K = v?) -+ (K = V")

act as zero on the tensor spa®)®" given in Theorem 1.4.8. The result now
follows from Lemma 1.4.11. O

Remark 1.6.6 For later reference, we note that the mapg, y respectively from
Theorem 1.4.8, Remark 1.6.4, and Proposition 1.6.5 fit taggento the following
commutative diagram

U(g[n)

U(gly) - Sv(n,r)

in which all horizontal maps and the diagonal one are sugest and all vertical
maps are injections.
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2 Proof of the main results
Most of this section is devoted to proving Theorem 1.6.1. fiinad result of this

section, Theorem 2.6.1, is an equivalent formulation ofoFam 1.6.1, compatible
with Lusztig's modified form of the quantized envelopingelga.

2.1 A subalgebra oﬁ,(n, r) isomorphic tas# (W)

A presentation foé\,(n,r) in the casen > r was given in [11, Proposition 2.5.1],
and our main strategy for proving Theorem 1.6.1 will be topdais presentation.

Proposition 2.1.1 The algebreé,(n,r) is generated by elements
{#ho deWU{gl A e AN U{@;, 1A €A}

The elementgd , are subject to the relations of the affine Hecke algebra of Def
inition 1.2.1 under the identification given by Theorem@ (@i). The generators
are also subject to the following defining relations, whedegsotes a generator

S GWA.

Gor B =% Y Yo (Q17)
dEWA

ooPor = A2 (Q18)

B oW = UG- (Q19)

A key step in understanding the structure of the alg@bad Definition 1;6'3
is locating within it a subalgebra isomorphic to the affineckiealgebraz’(W).

Theorem 1.3.6 (iii) shows that this can be done for the atgéb(m,r), and we
now review how this works in terms of endomorphisms of teispaice. Recall the
definition of weight space from Definition 1.4.6, and the dé&bn of the weight
w from Definition 1.3.1.

Definition 2.1.2 For each I<i <, let T(Tg) : Ve — Vi be the endomorphism

corresponding to the action oRE — 1 ¢ G(gA[n). Similarly, let7(T,-1) be the
endomorphism corresponding to

FoFn-1--Fr1R,
and letr(T,) be the endomorphism corresponding to
E/Erj1---EnaR7L

Lemma 2.1.3 The endomorphisms(Ty) defined above (for vt {5 : 1 <i <
r}u{p,p1}) satisfy the relations of Lemma 1.2.2 (after replacinddV t(Ty)).
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Proof Using the epimorphisma’ : U(gl,,) — Sy(n,r) studied in [1], [8], [10], one
finds that the action of (Ts) onV,, in the case where# r corresponds to the
action of g5 ., € Sy(n,r). (Recall from Theorem 1.4.8 th&(n,r) is the quotient
of U(gl,,) by the annihilator o#/{".) This proves relationél’), (2') and(3') of
Lemma 1.2.2.

The effect oft(T,) onV,, is

T(TP)<31®"'®eir) =€, ¥ e,

wherej; =iy —1 modr. The effect Oﬁ-(Tpfl) onV,, is the inverse of this action.

The proof of relationg4’) and (5') now follow by calculation of the action of
VRKE; — 1 onV,, using the comultiplication. O

Remark 2.1.4 Definition 2.1.2 and Lemma 2.1.3 are very similar to [11, Diefin
tion 3.3.1] and [11, Lemma 3.3.2], respectively. They auded here because
[11, Definition 3.3.1] contains an incorrect definition fiqfTs, ).

Lemma 2.1.5 Definet(Ts,) := 7(Tp)1(Ts, ) T(T,-1). Then the map taking(Tw) to
Tw (Where we {s : 1<i <r}uU{p,p~1}) extends uniquely to an isomorphism of

algebras betwees#’ (W) and the algebra (.##) generated by the endomorphisms
T(Tw).

Proof This follows from Lemma 1.2.2 and the argument given in [Xmely
[11, Lemma 3.3.3, Lemma 3.3.4]. ad

For later purposes, it will be convenient to have versionthefabove results
that do not make reference to the grouplike elem&asidR 1. The following
lemma is the key to the necessary modifications. (Recalhtbrat + 1 by assump-
tion.)

Lemma 2.1.6 Let ec V,,. Then we have
Re=(FF---F).e

and
Rle=(E_1E_»---E1)Ene

Proof It is enough to consider the case where
e=@,06,0 Q6

is a basis element, and this turns out to be a straightforesetcise using the
comultiplication inU(gl,). a

Proposition 2.1.7 For eachl <i <r, let T'(Ty) : Voy — Vi, be the endomorphism

corresponding to the action of Mg —1 € U(gﬁ]). Similarly, lett’(T,-1) be the
endomorphism corresponding to

(FaFn-1---Frya) (RR2- - F),
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and lett’(T,) be the endomorphism corresponding to
(ErEr+1'"En—l)(Er—lEr—Z"'El)En-

Then, after replacing J by 1/(Ty), these endomorphisms satisfy the relations of
Lemmal.2.2.

Proof Combine Lemma 2.1.6 with Lemma 2.1.3. O

2.2 Weight space decomposition Df

An important property of the algebi&is that it possesses a decomposition into
left and right weight spaces, similar to that enjoyed by thdirary and affine
g-Schur algebras.

Definition 2.2.1 An element € T is said to be ofeft weightA € A(n,r) if for
eachi with 1 <i <nwe have

B(Ki).t = Vit

wheref is the map defined in Definition 1.6.3. There is an analogofigsitien
for elements ofight weightA. The left (respectively, right) -weight spacef T
is theQ(v)-submodule spanned by all elements of left (respectiviglity weight
A.

Definition 2.2.2 For eachA € A(n,r), define the idempotent element & T by

the image of } € Sy(n,r) under the canonical inclusion map from Remark 1.6.4.
Here the } are the idempotents which were defined in [7, (3.4)]. The sfim o
the 1), asA varies overA(n,r), is 1. Moreover, 11, = 0 for A # p, i.e. the
idempotents are pairwise orthogonal.

Proposition 2.2.3 The algebra T is the direct sum of its Iafiweight spaces, and
the nonzero\ -weight spaces are indexed by the elements(@fr).

Proof Thanks to the above orthogonal decomposition of the idemtiT, there is
a direct sum decomposition

T=@rcann T
Moreover, inS,(n,r) we have the identity
U(Ki)l)\ :)\il)\ (i:l,...,n)

from [7, Proposition 8.3(a)], where is the quotient mapJ(gl,,) — S,(n,r) of
Theorem 1.4.8. Now it follows from the embedding of Remar.4,. or more
precisely from the commutativity of the diagram in Remai& @, that

B(Kl)l)\ :/\il)\ (i:l,...,n)

holds in the algebr&. Thus it follows thai3 (K;)v= Ajvforalli=1,...,nand all
ve 1, T. This proves that IT is theA-weight space ifT. O
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For simplicity’s sake, we will write En place of3(E;) and k in place of3(F)
for the remainder 0§2.2.

Lemma2.2.4 (i) In T we have K1, =v*i1,.
(i) The idempotent, lies within the subalgebra of T generated by the K
(i) In T, the idempotert, coincides with the image axf)\l_/\ underf.

Proof Part (i) is already contained in the proof of the precedirgppsition, and
part (i) is due to the definition of,lin [7] as

u=ls]- (3]
where[Ki] = ., Kok v

Part (iii) is a consequence of the remarks preceding [10,rhar?.9] combined
with [10, Corollary 2.10]. O

Definition 2.2.5 For each with 1 <i <n, let aj = ((aj)1,...,(0i)n) be then-
tuple of integers given by

1 if j=i modn,
(a)j=4q—-1 ifj=i+1 modn,
0 otherwise.

The following identities will be used frequently in the segjuften without
explicit reference. In these identities, it will be convemti to regard a weight =
(A1,...,An) as an infinite periodic sequence of integers, indexed byy setting
Aj for any j € Z to the corresponding valug such that I<i <nandj =i mod
n.

Lemma 2.2.6 LetA € A(n,r), extended to an infinite periodic sequence as above.
The following identities hold in T:
() Forany1l<i <n,we have

1= 0 otherwise.

(i) Foranyl <i <n, we have

L oF ifA>0;
Fl, = i
1= {O otherwise.

Proof By Remark 1.6.4 and Lemma 2.2.4, it is enough to check th&t fides of
each identity agree after projection$g(n,r). By Theorem 1.4.7, it is enough to
check that both sides of each identity agree in their actioteasor space, which
is a routine calculation. ad

The following lemma will be used extensively in the sequeé Will some-
times refer to it as theancellation principleor T.
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Lemma 2.2.7 Letc> 1. LetA € A(n,r), extended to an infinite periodic sequence
as above. The following identities hold in T:
(i) For eachl <i < nwith A; = 0, there exists a nonzero elemerg z7 such that

71 if Ai1>c;
FOECL, =g =
e A {0 otherwise.

Furthermore, if c= Aj, 1 = 1then z= 1.
(i) For eachl <i < nwithAj, 1 = 0, there exists a nonzerd ¢ & such that

Z1 if Aj >c;
ECFCL, =4 A =
A {0 otherwise.

Furthermore, ifc=A; =1, then Z= 1.

o~

Proof By the formulas in [16, 3.1.9] we have the following iderggiinU(gl,,):

t szchs%llzi _V72t+2c+sfl|zi71

©p(© (c-t) (c-t)
EYEY =S F E
1 | t; | sI:l VS _ V_s 1
|:_<C) E_(C) _ E_<C*t) t V2t—20—s+1‘zifl _ V_2[+ZC+S_1|Zi F_(cft)
i i Z} i H VS —y—S I
> =

whereK; = KiK; ;4 andX™ = X™/[m]! for X = E;,F. Here[m] is the quantum
integerm) = (V" —v™)/(v—v~1) and[m|! = [1]-- - [m— 1][m] for anym € N.
Since the above identities hold UJ(gA[n), they hold in the quotient . Multiply
the second identity on the right by 1By Lemma 2.2.6 and the hypothedis=0
all terms on the right hand side will then vanish, exceptimgterm corresponding

tot = c. So we obtain the identity
Cc y—Stlg-1 —117.
o) —(c % K™ —Vvs K
Fi< >Ei( )1)\ = U I—v*s 1,

and a similar argument with the first identity above in liglfittee hypothesis
Aix1 = 0 yields the identity

c y—stlg. _\s-1g-1
(C) (C) V K| - KI

EF1, = |—! — 1,.

1 | B VS—V S

These are identities in the quotient In fact, they hold in the subalgeb&(n,r)
under the embedding of Remark 1.6.4. By Lemma 2.2.4(i) tliwedentities in
T take the form

c VAi_,_lfAi*&H. _ VAifAi+1+Sfl

(©) ()
FOE1, = 4 1,
I 1 18 VS —vV S
c V)\i—)\Hl—S—‘rl _ \/Ai+1_AiS_1
Ei(C) Fi(C) 1)\ — = 1)\ .
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Remembering that; = 0 in the first formula and;;1 = 0 in the second, by mul-
tiplying through by([c]!)? we obtain the desired result, where

2= (o2 Mgt Z= a2

in terms of the standard Gaussian binomial coefficients ¢sg¢16, §1.3]). The
proof is complete. ad

Definition 2.2.8 Maintain the notation of Lemma 2.2.7. Lt be a monomial in
the various elements, F and 1, of T. We call a monomiaM’ areductionof M
if it () represents the same elemenfoisM and (b)M’ can be obtained frori
by omitting zero or more generatorsidfof the form 1.

A distinguished ternm the algebrd is an element of of one of the following
two forms:
(i) EF1,, wherec > 0 andA; = 0;
(i) K1), wherec > 0 andAj 1 = 0.

A strictly distinguished monomiah the algebral is a monomial in the el-
ementsH, E; and 1, that can be parsed as a word in the distinguished terms. A
reduction of a strictly distinguished monomial is calledistinguished monomial

Example 2.2.9 The idempotents,lare both distinguished terms and distinguished
monomials inT: here, we take = 0.

If Aj =0 andAi1 = cthen the elemer¥’ = F°EF1, of Lemma 2.2.7 (i) is a
distinguished monomial. Indeed, it can be seen by repegag@itations of Lemma
2.2.6 (i) and the fact thatylis idempotent, thak’ is a reduction of the strictly
distinguished monomia¥l = (F°1)¢q,)(EF1)). (To verify thatM is strictly dis-
tinguished, one must note thgt + ca;);i;1 = 0.) Furthermore, by Lemma 2.2.7
and the fact thakj,; > ¢, we see tham = M’ is a nonzero element df.

Similarly, if Aj = candAi;1 = 0 then the elemer°F°1, of Lemma 2.2.7 (ii)
is a distinguished monomial.

In the sequel, we will make use of various automorphisnig;gfart (i) below
may be used without explicit comment.

Proposition 2.2.10 (i) There is a unique automorphiswof T of order n satisfy-
ing

V(E) =Eis1,
v(F)=F1and
V(K = Kif—ll’

forall 1 <i <n, and reading subscripts modulo n. et A(n,r) and define
)\+ = (Anv)\l,A27)\37 cee 7)\n—1)~

Thenv(l,)=1,,.
(ii) There is a unique anti-automorphisonof T satisfying

o(E) =FH,
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o(F)=FE and
O.(Kiil) _ Kiil,
for all 1 <i < n. The anti-automorphisra fixes all element$, € T.

Proof For (i), we note that there is an automorphisnthﬁﬁﬁ]) corresponding to
v, that in addition fixes the elemeni®&; this can be verified by checking the

o~

defining relations fotJ(gl,). Since this automorphism preserves setwise the set
of relations (Q15) and (Q16) ih, we obtain an automorphism ®fas claimed; it
is unigue because we have given its effect on a generatirfgeseTheorem 1.6.1).
The last claim of (i) follows from the relationship betwed&e K; and 1, ; see for
example [10, Corollary 2.10].

The same line of argument can be used to prove (ii). ad

Lemma 2.2.11 Let M= tyts-- -t be a strictly distinguished monomial with dis-
tinguished termgtThen M+ 0 if and only if the following two conditions hold:
(i) each termitis nonzero;

(i) for eachl <i <k, there exista € A(n,r) such thatt=t1, and {1 = 1)t 1.

Proof Condition (i) is clearly necessary fof to be nonzero. To see the necessity
of condition (ii), recall from Lemma 2.2.6 that for each tegrthere existA, u €
A(n,r) such that; = 1t = t;1,,.

We now check sufficiency. It will be enough to show tisgv)M # 0, where
o is as in Proposition 2.2.10. This follows from Lemma 2.2idded, the hy-
potheses\i 1 > c or A; > c follow from condition (i) above, and condition (ii)
above implies that i1, =t; then we have

o(tiy1) ottt = Z”O'(tprl)l)‘ tit1
=Z'0(tiy1)tis1,

whereZ’ is equal either t@ or to Z as in Lemma 2.2.7. There is a uniquec
A(n,r) such thamM = M1, and an induction now shows tha{M)M is a nonzero
scalar multiple of ;, completing the proof. O

2.3 A subalgebra of isomorphic toé,(n,r)

The aim 0f§2.3 is to show that the relations satisfied by the endomomuhisf
Proposition 2.1.7 are in fact consequences of the definitadioas (Q15) and
(Q16) of the algebra . In this section, we may abuse notation by identifying

elementsi of U(gl,,) with their imageg3(u) in T (see Definition 1.6.3).
Recall from Remark 1.6.4 that there is a natural subalgdbfasomorphic to
the ordinary-Schur algebra$, (n,r). Using this fact, we can make the following

Definition 2.3.1 For each i < r, define elements df by
{(Ts) = (VREi — 1)1q,
Z(Tp—l) = ((FnFn—l"'Fr+1)(F1F2"'Fr)) 1w,
Z(Tp) - ((Er Er+1 cee En—l)(Er—lEr—z T El)En) 1o
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Remark 2.3.2 It follows from repeated applications of Lemma 2.2.6 thatlea
element{ (Ty) given in Definition 2.3.1 has the property thgsQ(Tw) = {(Tw).

Lemma 2.3.3 The expressions given fdi(T,-1) and {(T,) are distinguished
monomials.

Proof This is a routine exercise, in which the hypothesis thatr plays an im-
portant part. O

Lemma 2.3.4 The following identities hold in T:
0] Z(Tp—l) = (Fn(FlFZ"'Fr—ZFr—l)(Fn—an—Z'"Fr+1Fr)) 1,
(i)) {(Tp) = ((ErEr—1---E2E1)(Er1aEri2- - En1En)) 1o

Proof Equation (i) (respectively, (ii)) follows by applying regied commutations
between the generatdfs(respectivelyF;). O

Lemma 2.3.5 The following identities hold in T:
(i) Z(Tp—l)Z(Tp) = 1gu;
(i) {(Tp)(Tp-1) = Lo

Proof Letw' € A(n,r) be the weighty = (0,1,...,1,0,...,0), where the occur-
rences of 1 appear in positions324,....r + 1 < n. Then it follows from Lemma
2.3.4 that

{(Tp) = Lo ((ErEr—1---E2E1) 1y (Ery1Eri2- - En-1En)) 1o
and it follows from Definition 2.3.1 that
Z(Tp—l) = 1w((FnFn—1' : 'Fr+l)1w'(|:1F2' e Fr)) 1.

We will prove (i), and (ii) follows by a similar argument.
To prove (i), we first show that

1oy (FiF2- - F)1e(ErEr1- - E2Eq) 1y = 1y

The left hand side of the equation is readily checked to be ad gnonomial,
and then the equation follows by repeated applications®tth 1 case of the
cancellation principle (Lemma 2.2.7), starting in the nhéddf the equation (i.e.,
with K 1,E;). A similar argument shows that

lo(FaFn-1-Fri1) 1y (Eri1Bri2- - Enc1En) 1o = 1.
Part (i) follows by combining these last two identities. a
Lemma 2.3.6 Letl <i<r, and let
M = (E_1E_2---E1)(Ers1Ers2--En)lw.
Then the identityvF_1E;_1 —1)M = M(VRE; — 1) holds in T.
Note.Notice that both sides of the identity have right weight
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Proof Since the identity involves no occurrenceskpfor K, Remark 1.6.4 ap-
plies. More precisely, after applying a suitable symmefrthe Dynkin diagram,
we see that it suffices to prove the identity

(VR—r+i—1En—rqi-1— 1)|V|/ = M/(VFn7r+iEnfr+i -1)
in the ordinary-Schur algebra, where indices are read moduiand we have
MI = (En—lEn—Z'"En—r+1)(E1E2'"En—r)lwa

and
w =(0,0,...,0,1,1,...,1),

where 1 occurs times inw'.

By Theorem 1.4.8, it suffices to show that both sides of thatitleact in the
same way on tensor spa?é®’, and because both sides of the identity have right
weighta, it is enough to check this on the'-weight space. By Lemma 1.4.10, it
is enough to check that each side of the identity acts the sartiee element

€y =€Cnhr+1Q€h—r2Q - Q€n.

Fix jwith 1< j <r, and letg; .y be the tensor obtained by exchanging the oc-
currences 0é,_rj anden_rj41 in €, . Using the comultiplication, it is a routine
calculation to show that

(Fnr+jEn-r+j)€w = €j w +v ey,
and it is immediate from this that
(VRrr4jEnrij—1)€w = Ve 4.
Another calculation with the comultiplication shows that
(En-1En—2---En-r+1)(E1E2-+-En—r) 1oy €0y = €,

where
€y =€ ® (Enrt1®en_r12® Qen_1).

Let j be suchthat ¥ j <r. Letting(VF_r+jEn—r+j — 1) acton the left, we deduce
that

(VFn—r+jEn—r+j - 1)(En—1En—2"'En—r+1)(E1E2'"En—r)lw’e,w' = Ve(j@',

Wheree(j_w is obtained frome; o, by exchanging the occurrencesef ;. and

€n—rtj+l
The result now follows after we observe that

(En-1En—2---En-r11)(E1E2---Enr)10€j 1100 = € o-

Corollary 2.3.7 Ifiis such thatl < i < r, then the relation

{(Ts 1)¢(Tp) = {(Tp)d(Ts)
holdsinT.
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Proof Observe thak, commutes with, F_1, E; andE;_1. The assertion now
follows by left-multiplying the identity of Lemma 2.3.6 I&;. O

The techniques of proof of Lemma 2.3.6 play an important pathe next
brace of results.

Lemma 2.3.8 The following identities hold in T, whefie<i <r:

(i) (FE —v 1)1, = (EFR —V)1y;

(i) Lo(FnFn—1---FEEr11---En —Vil) =14(EErq1- - EnFRFno1- - R —Vv);
("') (EnFn - V)E]_Enlw == E]_En(E]_Fl - V) lw,

(iv) 1o(Fr—1Er 1 —V_l)ErEr—l"'EZEl =1uEE 1 BEE(RE —V_l)-

Note.The expressions appearing in (i) and (ii) above have bottaled right
weight equal taw.

Proof We omit the proof of (i), because it is similar to, but easkart, the proof
of (ii).

To prove (i), itis enough, by symmetry of the defining redat of T, to prove
the identity

1w— (Fn—l T I:r—lEr—l t En—l - Vil) - 1(,.)— (Er—l t En—an—l t I:rfl - V)a
where
w =(1,1,...,10,0,...,0,1).
R e
r-1 n—r
This can be regarded as an identitySy{n,r). By Lemma 1.4.10, it is enough to
check that each side of the identity acts in the same way oal#meent
€y —1REOR V& 206_1R€En.

A calculation shows that each side of the identity actggnto give
LR QW& 20 E_1.
To prove (iii), it is enough by symmetry of the defining retats to prove
(E1F1 —V)E2E11y+ = EEq (EoFo — V) 1+,

where
w'=(0,1,1,...,1,0,0,...,0).
r n—-r—1

By Lemma 1.4.10, it is enough to show that both sides of thatitjeact in the
same way on
€t =E2REIRQ - D €41,

A calculation shows that each side sergs to
BRI R D61

For (iv), observe that both sides of the identity have rigbightcw™, as defined
above. Since (iv) can be regarded as an identi,{m,r), Lemma 1.4.10 applies
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and it is enough to check that both sides of the identity hbeesame effect on
e+ A calculation shows that both sides of the identity sepdto

XX - V& 30E& 206 W& _1.

Definition 2.3.9 We define (Ts, ) to be the element oF given by
lo(FaFno1 - REE 1 En—v ).

Lemma 2.3.10 The following identities hold in T:
() {(Tp)q(Ts) = {(Ts_1)(Tp);
(i) {(Tp){ (Ts;) = {(T5)(Tp)-

Proof We prove (i) first. Using Lemma 2.3.4(ii), it is enough to peathat the
expressions

My = 1w(ErEr—1 te El)(Er+1Er+2 Tt En)(FnFn—l Tt Fr+1Fr)(Er Er+1 Tt En)

and
Mz = 1(Fr-1Er—1)(ErEr—1--E1)(Er11Bri2- - En)

are equal.
Using Lemma 2.2.6 repeatedly, and the notation of the prbbémma 2.3.6,
we find that

My = 10EEr 1 Ea(Lpt ErpaBri2- - EnFaFno1- - Frya Ll )R ErErya - - En,

and repeated applications of the cancellation principen{ma 2.2.7) show that
the given parenthetic expression is identically equal j0.1By Lemma 2.2.6
again, we have

My =1oEE1--- E11w+ FrErEr+1 =
= 1w(ErEr—1'"El)FrEr(Er+1Er+2 to En)~
Applying Lemma 2.3.8 (iv) gives
Ml = 1wFr—1Er—1(ErEr—1 T El)(Er+1Er+2"'En)a

which isMy, as required.
We now turn to (ii). By Lemma 2.3.8, parts (i) and (ii), it is@rgh to show
that the monomials

M3 = 1w(ErEr+1 T En)(FnFn—l e Fr)(ErEr+1 e En—l)(Er—lEr—Z T El)En

and
Mg = 16(ErErq1--En-1)(Er—1Er—2-- - E1)En(EsF1)

are equal. Using Lemma 2.2.6 and the notation of the proogaiiina 2.3.6 again,
we find thatM3 is equal to

1wEr Er-&—l cee EnFn(lw— Fn—an—Z T Fr Er Er—»—l te En—llw— )Er—lEr—Z T ElEn~
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By the cancellation principle, this simplifies to

Mz = 1,E Er—»—l toe EnFnlar E1E 2 E1E,
= 1w(ErEr+1 e En—l)(EnFn)(Er—lEr—Z e El)En~

Applying commutations yields

Mz =1(ErErq1- - Enc1)(Er—1Er—2- - E2) (EnFRE1En).
Using Lemma 2.3.8 (iii), we have

Mz = 14 (EErg1---En_1)(Er_1Er_2- - - Eo)(E1EqE1F1),

which is equal tdM4, as desired. O

Proposition 2.3.11 Lety: T — §,(n, r) be the epimorphism of Proposition 1.6.5.
Theny admits a right inverse: there is an injective homomorphism

~

1:S(nr)—T
such thatyo 1 is the identity homomorphism d})(n, r.

Proof We start by specifying on the subalgebra cﬁ\,(n, r) spanned by the ele-
mentsgg ,, as in§2.1. We define

1(1(Ts)) == ¢(Ts)

for 1 <i < r, and define
I(T(Tpﬂ)) = Z(Tpﬂ).

In these caseg,o 1 is the identity map by Proposition 2.1.7 and the definition of
{, so it is enough to check that the relations of Lemma 1.2.Zatisfied in the
image ofi. The difficult cases, (3 and (), follow from Lemma 2.3.5, Corollary
2.3.7 and Lemma 2.3.10. Since those cases hold, it is enougftetk cases (1L
(2) and (3) assuming that neithexnort is equal tor; this follows from Lemma
2.1.3 and Remark 1.6.4.

It remains to check relations (Q17), (Q18) and (Q19) of Psitpmn 2.1.1.
Since, by Remark 1.6.4, there is a canonically embedded abfy(n,r) in the

algebral (namely, the subalgebra generated byealF, Kj-i1 with i #£ n), we may
send the elementg})_/\ , (Pﬁ.,w and<pg_’w (whered lies in the finite symmetric group)
to the corresponding elementsDf (Observe that this construction is compatible
with the definitions in the previous paragraph.) More exficif M is a polyno-
mial in the generatorg;, F, Kj, K;l and there are no occurrenceskf or Fy,
thena (M) € Sy(n,r) andi (a(M)) = B(M) by construction. It then follows that

(yen)(a(M)) = y(B(M)) = a(M),

as required. Relations (Q17), (Q18) and (Q19) can be seewiddrhT (and thus
in the image of ) by Theorem 1.6.2 and Remark 1.6.4. ]
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2.4 Surjectivity ofi

So far we have shown that there is a monomorphisnﬁ,(n,r) — T. From

Definition 1.6.3 we have a surjective mgp: U(gﬂ) — T. We aim in§2.4 to
show that the image @8 is contained in the image of which will complete the
proof of Theorem 1.6.1.

Lemma 2.4.1 The algebra T is generated by the all elements of the foriy,E
1,Fandl,,for1<i<nandA € A(nr).

Proof The images of th&; andK; ! in T are linear combinations of the elements
1,, as they are in the ordinany-Schur algebra (see [10, Corollary 2.10]). The
image ofE; in T is a linear combination of elemerisl, , because the,lform an
orthogonal decomposition of the identity (see Lemma 2.&#ilarly, the image

of F in T is a linear combination of elementg®&. This shows that the usual
algebra generators df lie in the span of the elements listed in the statement.
Conversely, it follows from the definitions (see Definitio2 2) that the elements
listed lie inT, completing the proof. ad

Lemma2.4.21fi #nandA € A(n,r), the elements;&,, 1, F and1, lie in the
image ofi.

Proof The elements listed in the statement lie in the canonicatipedded copy
of Sy(n,r) in T. By the construction of (see the proof of Proposition 2.3.11),
such elements lie in the image of O

Lemma 2.4.3 (i) The element f,, of T lies ini (Q,(n,r)).

~

(i) The element,F, of T lies ini (Sy(n,r)).

Proof By construction oft, the elemen?(T,) lies in the image of. SinceT
contains a canonical copy & (n,r) (see the proof of Proposition 2.3.11), the
element

(FlFZ T Fr—l)(Fn—an—Z T Fr)lw

lies in the image of. By multiplying these two elements we see that
(FlFZ"'Fr—l)(Fn—an—Z'"Fr)(ErEr+1'"En—l)(Er—lEr—Z'"El)Enlw

lies in the image of. Applying the cancellation principle, this latter expriess
simplifies toEy1,,, completing the proof of (i).
A similar argument using (T,-1) in place of{ (T,) can be used to prove (ii).
O

Our main effort will be directed towards proving that therettse,1, lie in
the image ofi. More precisely, we will prove the,1, lies in the ideal of Ini)
generated byE,1,. Our argument will rely on the following technical lemma
whose proof will be deferred t§2.5.
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Lemma 2.4.4 Fix A € A(n,r) such thatA; > 0. There exists a distinguished mono-
mial M in the generators £F and 1, satisfying the following conditions:

() M =1,M1, #0;

(i) M contains no occurrences of,H, E1 or Fy_1;

(iii) all the occurrences of Foccur consecutively, as do all the occurrences of
En-1;

(iv) there are at mosd; — 1 occurrences of E

Lemma 2.4.5 Let o be the antiautomorphism of T given in Proposition 2.2.10
(i), and let M andA be asin Lemma 2.4.4. Then there is a nonzero scata@zv)
such that

Enl), = zo(M)(Enly)M.

In particular, E;1, lies in the ideal ofm(1) generated by Fl,.
Proof The monomiaM is equal to a strictly distinguished monomial
M =ttt

After moving unnecessary idempotentdvinto the right using Lemma 2.2.7, and
omitting the corresponding idempotents from the tetfnse may assume th
is of the form

M = tmtm_1---t11,.

We will prove by induction ork < mthat
(o(t1)o(t2) - o (t))En(tidi-1--t1) 1y

is a nonzero multiple oEn1, ; the cas&k = mis the assertion of the Lemma. The
base casé& =0, is trivial.

There are two cases to consider for the inductive step. Tétecise, which is
easier to deal with, is that is of the formEF for somec > 0. In this case, we have

O (tk)Entk = I:iCEn Eica

which can be rewritten as

EnFCES
using the relations dﬂ(g[;). (Note that we do not have= n, becaus@& does not
contain occurrences &,.) We now have

FCEntitk_1---t11) = EnR%tluti 1tz - -t11)

for a suitableu € A(n,r). The hypothesi$! # 0 means that we have 1 > c,
so we may apply Lemma 2.2.7 (i) to replalgét1, by z1, with znonzero. The
proof is now completed in this case by the inductive hypdthes

The second case is thitis of the formF° for somec > 0. In this case, we
cannot havé = n ori = n— 1 because of condition (ii) of Lemma 2.4.4. Suppose

for the moment thait# 1. Then the relations ibl(gr;) show that
ECELFC = EnECFC.
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We can then proceed as in the first case to show that

EicEntktk_l 111y = EnEiCtkl”tk_ltk_z ---111y
= Enzllutkfltk72 R N Y

whereZ is nonzero. Here we have used Lemma 2.2.7 (ii), which is apble
becauséV is nonzero angl; > c. Again, we are done by induction in this case.
The remaining case is the possibility that Ff for somec > 0. The relations

in U(gﬁ]) show that
EfEnFf = EfF{En,

and so we have
EfEntktk,l 111 = E](_:tkEnlutkfltku 111,

BecauseF; arises from a distinguished term, we hgwe= 0. By Lemma 2.2.6
(i), we have

EfFTEnly = EIF{1,En,
where againu; = 0 (recall thain > 3). Hence
EfEntktk,l 111, = Z,lp’Entkfltku 111,

FurthermoreZ is nonzero. To see why, we recall that by condition (ii) of Lreen
2.4.4, there are no occurrencesmfor E, or F, in M and that by condition (iii),

all the occurrences df; occur consecutively. Repeated applications of Lemma
2.2.6 then show thai; = A;. Lemma 2.2.7 (i) then applies again to yield

ESFPL, = 7',

andZ’ is nonzero because by condition (iv) of Lemma 2.4.4,A1 — 1 <A1 = ],
Once again, the assertion follows by induction in this case.

Finally, we observe that since batth ando (M) avoid occurrences @, and
Fn, they lie in the subalgebra df corresponding t&,(n,r). This means thavl
ando (M) lie in Im(1), and the proof follows. O

Corollary 2.4.6 If A € A(n,r), the elements ,, 1, F, and 1, lie in the image
of 1.

Proof If A; =0, thenE,1, = 1, F, = 0 and the assertion is trivial. Otherwise, the
assertion follows by combining lemmas 2.4.3 and 2.4.5. O

Proof of Theorem 1.6.1 (modulo Lemma 2.484) Lemma 2.4.2 and Corollary
2.4.6, the generators @flisted in Lemma 2.4.1 all lie in If1). This proves that
is surjective, and taken in conjunction with Propositiod.21, we see thatis an
isomorphism. This completes the proof of Theorem 1.6.1 (fwdemma 2.4.4).
O
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2.5 Proof of Lemma 2.4.4
The only other ingredient needed to prove Theorem 1.6.11nsrhea 2.4.4.

Definition 2.5.1 Let u,v € A(n,r). We say thap andv areZ-equivalenif they
become equal after their zero parts have been deleted.Hén atords,u andv
correspond to the same parabolic subgroup of the symmetnigpg

Lemma 2.5.2 LetA € A(n,r) with A; > 0.
(i) There exists a nonzero distinguished monomialiiMthe generators E Es,
...,En_1, such that the occurrences of & occur consecutively, satisfying

Mz = 1,Ms1,.

Here, u = p(A) is such that (a)u and A are Z-equivalent and (bJ(u) (see
Definition 1.3.1) is of the form
(1,1,...,1,2.2,....2,... )k k... k).
N— e N—— N—_——
H1 H2 Hi

Furthermore,u; = A1, k<rand thuspg,1 = pixkio == Ur1=---=Up = 0.
(i) Let u be as in part (i) above, and let be the unique element 8f(n,r) such
that (a) v4 = pi+1 whenever

[
a=1+ i
2

forany0 <i <r, and (b)v, = Ofor other values of a. (In particulag, = p1 = A1,
andv and u are Z-equivalent.) Then there exists a nonzero distinguishono-
mial M in the generators £, ..., Fy_2 satisfying

M2 == lv le[.l'

(iii) Letu andv be as in (ii) above. Then for eadh< i <r we have
Hi
D Vi(i)+j = Hi = Vb(i)+1;
=1

where l§i) = 3. tx. Summing over all i, this yields

r
vj=r
B

and henceyr 1 =Vvro=---=v,=0.
(iv) Letv be as in part (ii) above. Then there exists a nonzero distsigad mono-
mial M3 in the generators EF,, Fs, ..., F,_» satisfying

Furthermore, the occurrences of Bcecur consecutively, and there akg — 1 oc-
currences of .
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NoteNote that in the above situatiop,andv are uniquely determined by.
For example, ih=9,r =7 and

A =(2,0,0,3,0,0,0,0,2),
then we have
u=(23,2,0,0,0,00,0),

and

v=(20,3,0,0,20,0,0).
2 3 2

In this case, we could take
M1 = 1, ESESESESESESESESL),
My = 1, FSF2F2F{,,
Mz = 1,F1FaF2Fs1,.
Proof To prove (i), letA € A(n,r) be such thah; = 0 andA; ;1 =c > 0. Lemma

2.2.7 (i) implies thaEf1l, is a nonzero element df, and iterated applications of
Lemma 2.2.6(i) show thad 1) = 1:E’, where

A ifj=i,
sz Aj ifj:i—|—1,
Aj otherwise.

Repeated applications of this procedure can be used to nlbtleeazero parts
of A to the right. Sincel; > 0 by assumption, we haye = A1, and it is never
necessary to use an applicationmf It is necessary to use applicationskf 1

if and only if A, > 0, but in this case they may all be applied consecutivel\c&in
there are at most nonzero parts i and sincen > r, we havek < r. We have
Mj # 0 based on an inductive argument using Lemma 2.2.11. Theatkertions
of (i) follow.

The claims in (ii) concerning are routine apart from the assertion regarding
the distinguished monomial. The proof of (iii) then follofytem the characteri-
zation ofv given in (ii). (The reader may find it helpful here to look aéthote
preceding this proof.) The entri®g, 1, V1 2,..., Vs can effectively be ignored for
the rest of the proof.

The proof of the last assertion of (ii) follows similar linesthe proof of (i).
The main difference is that the aim is to move certain of the zemponents of
to the left. The basic step involvgse A(n,r) such thaty; = ¢ > 0 andpi1 =0,
in which case Lemma 2.2.7 (ii) shows tt&tl, is a nonzero element &f, and
iterated applications of Lemma 2.2.6 (i) show tRat,, = 1;F°, where

Mivy 0fj =i,
=qm ifj=i+1
uj  otherwise.
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Sincev; = U1 = A > 0 by the definition of/,, no applications oF; are necessary.
The fact thaty, = 0 shows why no applications &},_1 are necessary. As before,
Lemma 2.2.11 shows whyl, # 0.

To prove (iv), observe that can be written as the concatenation of maximal
segments of the form

(vi,0,0,...,0).
1
Vi—

Let us first deal with the case whevg = r. Here, the monomial may be given
explicitly as

Ms = 1oFL 4F2 5 - F)r 2R 1,

This monomial is easily checked to be distinguished. In theegal case, there

is a monomial in thes corresponding to each of the maximal segments men-
tioned above, and monomials corresponding to distinct seggrcommute. When
these monomials are concatenated and flankedogntl 1,, we obtainMs. The
occurrences df; all correspond to the segment containingand the explicit for-
mula above shows that these occurrences are consecutitieaidere ard; — 1

of them. (This number may be zero.) As in the proof of (ii) abothe fact that

wh, = 0 explains why there are no occurrencedgf;. Also as above, Lemma
2.2.11 shows whs #£ 0. ad

Proof of Lemma 2.4.4h the notation of Lemma 2.5.2, the required monomial is
M = 1,M31yMo1;M11,.

Properties (i)—(iv) of Lemma 2.4.4 follow from the variousrfs of Lemma 2.5.2.
SinceM31, M, andMs are nonzeroM is honzero by Lemma 2.2.11.
This completes the proof of Lemma 2.4.4, and therefore obfdma 1.6.1. O

2.6 An alternative presentation ét(n, r

Lusztig [16, Part IV] has defined a modified form of a quantieadeloping alge-
bra, by replacing the zero part of the algebra with an infigjtstem of pairwise
orthogonal idempotents, acting on modules as weight spapegbors. The mod-
ified form has a canonical basis with remarkable propersiesilar to properties
of the canonical basis of the positive part of the originamized algebra.

The following presentation of the algeb®a(n, r), compatible with Lusztig’s

modified form ofU(gT[;), is equivalent with the presentation given in Theorem
1.6.1.

Theorem 2.6.1 Assume that p- r. OverQ(v), the aIgebraé,(n,r) is isomorphic
with the associative algebra (with 1) given by the genemtgr (A € A(n,r)),
Ei,Fi (1 <i < n)and relations

i)\iuzé)\’ui)‘; iy =1, (Rl)
AeA(nyr)
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s i)\ +a; Ei if /\i+1 > 07
Biiy= {O otherwise; (R2)
. ir_gFi ifA >0,
Fiiy = | R
1A {0 otherwise; (R3)
EFj—FiEi=a; > [ji—Ajlia (R4)
Aen(nyr)

along with relations (Q6)—(Q9) of Definition 1.4.1. Here wegard weights as
infinite periodic sequences, as in Section 2.2 above.

Proof Let A be the algebra defined by the presentation of the theoreniegimd
be the algebra defined by the presentation of Theorem 1.6.1.

By Definition 2.2.2, Lemma 2.2.4, and Lemma 2.2.6 the elemépt(A €
A(n,r)), E,F (1 <i<n)of T satisfy the relations (R1)—~(R3). The, F (1 <i <
n) already satisfy relations (Q6)—(Q9) by assumption. Bylgpg Remark 1.6.4
to the results in [7, Theorem 3.4] we see that (R4) holds alsferedll 1 <i, j < n.
If one or both ofi, j is equal tan, then we choose a different embeddingpfn, r)
in T, one which includes the values bfj in question, and again apply Remark
1.6.4 to the results in [7, Theorem 3.4] to see that (R4) hivldsat case as well.
In T we have by Lemma 2.2.4 the equalities

Ki=Kiy 1= ZvAi Ly Kt=K'S1= ZV_AilA (*)
A A A A

for any 1< i < n, where the sums are taken over alle A(n,r). Hence, the
elements 1 (A € A(n,r)), E,F (1 <i <n)generatdl, and the map

iy—1,, E—E&, Fi—F

defines a surjective quotient map frgkontoT.

On the other hand, in the algebk@ne defines elemenitg = 3, Vi), Ki‘1 =
3 v ii,. By following the same line of argument as in the proof of [Agdrem
3.4], these elements, along with the elemémni§; for 1 <i < n, satisfy the defin-
ing relations (Q1)—(Q9), (Q15), (Q16) af. It remains to show that the elements
En, Fn also satisfy those relations (along with tKe K(l). Only relations (Q3),
(Q4), and (Q5) are in question since the other relationgehbld by assumption
or do not involve the elemeni,, Fp.

We now verify that relation (Q3) holds fdi,. By definition ofK; we have

K|En - Z\IAI lA En
A

and by relation (R2) this takes the form

KiEn:zv’\i Enia_ay
A

where, for convenience of notation, we take both sums ovesé of allA € Z"
satisfyingy Aj = r, with the understanding tha, is interpreted to be 0 in case
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any part ofA is negative. (This makes all the sums in question finite.) Keplace
A —ap by pu € Z" and the above gives relation (Q3) fey.

The proof that relation (Q4) holds f&t, is similar.

Finally, we verify that (Q5) holds. By the given relation (Rde have

EiFj —FjEi = 5,‘ Z[)\j —)\j+1] iy
A

and this gives 0 unless= j, so (Q5) holds in case# j. Assuming that = j, the
above sum becomes

V=i At

iy

EiFi — FiE; = z
A
(SaVViapv sty ) — (v N VA, )
v—v1
(EAVHip)(EaVhetin) = (Sa v hiap) (5a Viitdy)
v—v1
using the orthogonality of the system of idempotents. By dbénition of the
Ki,K;* this proves (Q5) in case= j.
We claim that the eIementSi,Kfl, Ei,F; (for 1 <i < n) generatéA. To see
this, it suffices to show that the€;, Ki‘1 generate the zero part Af(the span of the
i ). From the definition oK; andKi‘1 it follows that

v—v1

Kji)\ :V)\j i)\; Kj_liA :V_Aj i)\

and thusk; = Kj 33 i = 3) VN iy andKj =Ky, ip = 34V 21, where
the sums are over all € A(n,r). Hence it follows that

t Vs —v—S

L (Vi stiy) — (a v hits )

- U Vs—vy~S

t VAi—SHL _ - Ajts-1 '

Vs—vy~s 1)‘

Nl-T KV oK

=

f

A
to\Aj—stl _\—Aj+s-1

- ix

SD Vs—vy~S

A

t

B

where we have again made use of the orthogonality of the idems to inter-
change the product and sum. From this and the othogonalitglesfpotents it
follows that for anyu € A(n,r) we have

-l -A (s -)

Il
N1

N
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gl

whereA runs over the sed (n,r) in the sums. The only non-zero term in the last

sum is whem = 1, so
Ky Kn =i
H1 Hn| — TH

This proves the claim. (The reader should refer to 63] for definitions and
basic properties of quantized binomial coefficients used.he

We have shown that the elemeitts Ki‘l, Ei, Fi (for 1 <i < n) generate the
algebraA, and moreover satisfy all the defining relations for the bigd . It
follows that the map

K — K, E—E, FR—F

is a surjective quotient map frofih onto A.

Now consider the composite surjective mep- A — T. This is the clearly
identity onE;, K. Moreover, by equations) above the composite map takgso
3 Vi1, =K;. Similarly, it takesk,~* to itself. Thus the composite is the identity,
and thus each quotient mdp— AandA — T is an algebra isomorphism. O

3 The classical case

All of the results of this paper have analogues in the sas€l. The proofs run
parallel to the arguments given here, but are often easewlM/outline the main
results here, and leave it to the reader to fill in the details.

3.1 The affine Schur algebra

The analogue of Definition 1.3.4 is the following

Definition 3.1.1 The affine Schur algeb@n, r) overZ is defined by
Sinr):=Engd; | P W |,
Aen(nyr)

wherex, = > weiy, W-

There is a basis o§(n,r) similar to the basis oéq(n,r) given in Theorem
1.3.6. The details are left to the reader.

Definition 3.1.2 The associative, unital algetirb(gﬂ) overQ is given by gener-
ators
e, fi,H (1<i<n)
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subject to the relations

HiHj = HjHi; (a1)
Hiej —ejH; = 8+(i, ey (92)
Hifj—fiHi=¢ (i,))fj; (93)
afj—fja:&j(Hj—HHl); (94)

eej = ejg if i andj are not adjacent; (95)

fif; = f;fj if i and j are not adjacent; (96)

e’ej — 2aeje +eje? = 0if i and| are adjacent; (q7)
f2f; —2fif; fi + f; 2 = 0if i and j are adjacent (a8)

Asin Dgfinition 1.4.3 the notion of adjacency takes placehm Dynkin diagram
of type An_1, S0 we read indices moduioin this definition.

This algebra is a Hopf algebra in a natural way, and the guboéU (gﬁ)
by the kernel of its action on a suitably defined tensor spaégomorphic as a

Q-algebra taQ ®7, §(n, r.

3.2 Main results

The analogue of Theorem 1.6.1 is the

Theorem 3.2.1 Let n> r, and identifyS(n, r) with the quotient of L(Jg[;) acting

on tensor space. Ovdp, the affine Schur algebrg(n,r) is given by generators
g, fi,Hi (1 <i < n) subject to relations (g1) to (g8) of Definition 3.1.2 (rézy
indices modulo n), together with the relations

Hi+-+Hh=r; (99)
Hi(Hi — 1)(Hi—2)--- (Hi —r) = 0. (910)

There is also an equivalent version in terms of idempotamalogous to The-
orem 2.6.1, which we now state.

Theorem 3.2.2 Assume that o- r. OverQ, the aIgebraé(n, r) is isomorphic with
the associative algebra (with 1) given by the generatgrgA € A(n,r)), e, fi
(2 <i < n)and relations

i)\i[.l:(sA.,piA; iy =1, (rl)
AeA(nyr)

eiiy = {;)waiei if Aiz1>0, (r2)

otherwise;

 [iyaf A0,
fita= {O otherwise; (r3)
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eifj —fjei = & Z (Aj—Aj41) i (r4)
AeA(nr)

along with relations (g5)—(g8) of Definition 3.1.2. Here vegard weights as infi-
nite periodic sequences, as in Section 2.2 above.

These relations are obtained from those in Theorem 2.6.&tipgv = 1.

References

1. A.A Belinson, G. Lusztig and R. MacPhersohgeometric setting for the quantum
deformation ofGL,,, Duke Math. J61(1990), 655-677.

2. R.W. Carter and G. Luszti@n the modular representations of the general linear and
symmetric groupdMath. Z2.136(1974), 193-242.

3. V. Chariand A. PressleQuantum affine algebras and affine Hecke algebraific J.
Math.174(1996), 295-326.

4. C. de Concini and C. Procesi,characteristic free approach to invariant thegoidvances
in Math. 21 (1976), 330-354.

5. R. Dipper and G.D. JameRgepresentations of Hecke algebras and general linear group
Proc. L.M.S.52(1986), 20-52.

6. R. Dipper and G.D. Jameg;tensor space and g-Weyl modyl&sans. A.M.S327(1991),
251-282.

7. S.R. Doty and A. Giaquint@resenting Schur algebragit. Math. Res. Not2002
1907-1944.

8. J. Du,A Note on Quantized Weyl Reciprocity at Roots of Uwitg. Collog. 4 (1995),
363-372.

9. J.A. GreenPolynomial representations &L, Lecture Notes in Math., no. 830,
Springer-Verlag, Berlin-New York, 1980.

10. R.M. Greeng-Schur algebras as quotients of quantized envelopindedge]. Algebra
185(1996), 660-687.

11. R.M. GreenThe affine g-Schur algebyd. Algebra215(1999), 379-411.

12. J.E. Humphrey®Reflection Groups and Coxeter Groy@ambridge University Press,
Cambridge 1990.

13. M.A.Jimbo,g-analogue of Ugl(N + 1)), Hecke algebra, and the Yang-Baxter equation
Lett. Math. Phys11(1986), 247-252.

14. D. Kazhdan and G. LusztiRepresentations of Coxeter groups and Hecke algebras
Invent. Math. 53 (1979), 165-184.

15. G. LusztigSome examples of square integrable representations ofsephe p-adic
groups Trans. Amer. Math. So@77(1983), 623—653.

16. G. Lusztig/ntroduction to Quantum Group8irkhauser, Basel 1993.

17. G. LusztigAperiodicity in quantum affingl,,, Asian J. Matt3 (1999), 147-177.

18. K. McGerty,Cells in quantum affinel,, Int. Math. Res. Not2003 1341-1361.

19. K. McGerty,Generalized g-Schur algebras and quantum Froberpusprint (arXiv.org:
math.QA/0511697, version 2).

20. M. Varagnolo and E. Vasser@n the decomposition matrices of the quantized Schur
algebra Duke Math. J100(1999), 267-297.



