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1. Introduction

One of the most influencial contributions of Hermann Weyl to mathematical
physics has been his paper Gruppentheorie und Quantenmechanik [We27] from
1927 and its extended version, the book [We28] which was published a year later
and carries the same title. The main topic of this part of Hermann Weyl’s
work is the mathematics of quantum mechanics. After the fundamental papers by
Heisenberg and Schrödinger on the foundations of quantum mechanics had
appeared in the twenties of the last century this was the central question studied
in mathematical physics at that time and which to a certain degree still is present
in all attempts to construct mathematically rigorous theories unifying quantum
mechanics and general realtivity.

In his article Gruppentheorie und Quantenmechanik, Hermann Weyl essen-
tially introduced two novel aspects to the mathematics of quantum mechanics,
namely the following:

(1) The representation theory of (compact) Lie groups on Hilbert spaces was
applied to mathematically determine atomic spectra.

(2) A conceptually clear quantization method was proposed which associates
quantum mechanical operators to classical observables which mathemati-
cally are represented by appropriate functions of the space and momentum
variables. Nowadays, this quantization scheme is named after his inventor
Weyl quantization.

In this paper I will elaborate only on the second aspect, since the represen-
tation theory of compact Lie groups has already been covered in detail in other
contributions to these proceedings.
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Interestingwise, other than the group theoretical part in Weyl’s article from
1927, his quantization method did not immediately find acceptance in the scientific
community as the following part from a review by John von Neumann in Zen-
tralblatt shows:

Sodann wird eine Zuordnungsvorschrift von Matrizen zu beliebigen klassis-
chen Größen (d.h. Funktionen der Koordinaten und Impulse) vorgeschlagen.
(Da sie indessen gewisse wesentliche Anforderungen, die an eine solche
Zuordnung zu stellen sind – z.B. die Definität der Matrix für wesentlich
nichtnegative Größen u.ä. – verletzt, hat sie sich, trotz ihres einfachen und
eleganten Baues, nicht durchsetzen können.)

Only much later after the invention of pseudodifferential operators [Hö] and defor-
mation quantization [BFFLS] the virtue and power of Weyl quantization became
fully clear. As we will see in Section 4 of this article one can namely show by using
the modern language of pseudodifferential operators that Weyl quantization satis-
fies the axioms of a deformation quantization á la [BFFLS] (cf. [Pf98, NeTs96]).
My impression is that H. Weyl with his vision for a mathematically sound quan-
tization scheme was quite ahead of his time. The following quote from the book
[We28] supports this impression:

Ich kann es nun einmal nicht lassen, in diesem Drama von Mathematik und
Physik – die sich im Dunkeln befruchten, aber von Angesicht zu Angesicht so
gerne einander verkennen und verleugnen – die Rolle des (wie ich genügsam
erfuhr, oft unerwünschten) Boten zu spielen.

Let me explain now from the point of view of a mathematician what one means by
quantization. This can be seen most easily by the following diagram:

classical mechanics quantum mechanics

states

points x of a sym-
plectic manifold M
respectively propa-
bility distributions
on M

quantization
##

positive normed li-
near functionals µ
on a noncommuta-
tive C∗-algebra A

observables
elements a of the
Poisson algebra
(C∞(M), { , })

classical limit

cc
(self-adjoint) el-
ements a of the
C∗-algebra A

measuring
process

evaluation
(x, a) 7→ a(x)

evaluation
(µ, a) 7→ µ(a)

Generalizing Heisenberg’s commutation relations, P. M. Dirac proposed in his
influential book [Di, §. 21] that a quantization map q which associates to every clas-
sical observable a an element q(a) of an algebra of quantum mechanical observables
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should satisfy the following commutation relation:[
q(a), q(b)

]
= i~q({a, b}), (1.1)

where ~ denotes Planck’s constant divided by 2π, a, b are classical observables, and
{−,−} is the Poisson bracket. As Dirac noticed, the commutation relations (1.1)
show that “classical mechanics may be regarded as the limiting case of quantum
mechanics when ~ tends to zero” (cf. [Di, §. 21]). For physical reasons Dirac’s quan-
tization conditions are usually supplemented by the requirement that the algebra
of quantum observables q(a) acts irreducibly on a Hilbert space H. This Hilbert
space H or more precisely the corresponding projective space PH of rays in H is
then interpreted as the space of (pure) states of the quantum mechanical system.

In 1946 it has been observed by Groenewold [Gr] and later refined by van
Hove [Ho] that for the algebra of (polynomial) observables on R2n with its stan-
dard Poisson bracket a quantization map fulfilling Dirac’s commutation relations
Eq. (1.1) together with the irreducibility condition cannot exist. The theorems by
Groenewold–van Hove were extended by Gotay et al. [GoGrHu, Go] to more
general symplectic manifolds. By all these no go results the question arises, what
conditions a reasonable quantization theory should satisfy then.

Weyl’s quantization scheme motivated the right answer to that problem. As it
has been pointed out by Bayen, Flato, Fronsdal, Lichnerowicz and Stern-
heimer in [BFFLS], one should regard quantization as a formal deformation of
the algebra of classical observables on a symplectic manifold in the sense of Ger-
stenhaber [Ge]. This means that Dirac’s quantization condition is required to
hold only up to higher order in ~. Weyl quantization satisfies this requirement and
thus provides an important example of a deformation quantization.

The paper [BFFLS] initiated quite an amount of research on the existence and
uniqueness of deformation quantizations. The most outstanding are probably the
existence theorem for deformation quantizations over a symplectic manifold by
deWilde–Lecomte [deWiLe], the geometric and intuitive construction of star
products in the symplectic case by Fedosov [Fe94], and the result on the exis-
tence and the classification of deformation quantizations for Poisson manifolds by
Kontsevich [Ko]. For a detailed overview on this see for example [DiSt].

2. Weyl’s commutation relations

In his analysis of quantization Weyl started from the Heisenberg commutation
relations [

P,Q
]

= −i~, (2.1)

where Q resp. P denotes the quantum mechanical space resp. momentum operator.
Weyl showed that these relations cannot be realized by bounded operators on a
Hilbert space. His idea was then to integrate the Heisenberg commutation relations
which leads to the relations

V (s) U(t) = e−ist~U(t)V (s), s, t ∈ R, (2.2)

where V (s) = eisQ is the unitary abelian group generated by Q, and U(t) = eitP

the one generated by P . For the Schrödinger representation on L2(R) given by

Qu(x) = xu(x), P u(x) = −i~
du

dx
(x) for u ∈ S(R) and x ∈ R (2.3)
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one knows that(
V (s)u

)
(x) = eisxu(x) and

(
U(t)u

)
(x) = u(x + ~t). (2.4)

One thus obtains the integrated Schrödinger representation which obviously satisfies
the Weyl commutation relations (2.2). Up to unitary equivalence, the integrated
Schrödinger representation is the only irreducible nontrivial representation of the
Weyl commutation relations. Note that the Heisenberg commutation relations have
more than just one equivalence class of irreducible representations by (necessarily
unbounded) symmetric operators on a Hilbert space (see [Schm]).

Using the integrated Schrödinger representation let us define now the following
projective representation of R2:

W (s, t) = e−
i
2 stU(t) V (s). (2.5)

For a ∈ S(R2), the space of Schwarz test functions on R2, define its Weyl quanti-
zation qW(a) : C∞cpt(R) → C∞(R) by〈

v, qW(a)u
〉

:=
∫

R2
â(s, t)〈v,W (s, t)u〉 ds dt, u, v ∈ C∞cpt(R), (2.6)

where â denotes the Fourier transform of a. This is the original form of Weyl quan-
tization. Let us rewrite it in a more convenient form by applying the transformation
rule and Fourier transformation:

〈v, qW(a)u〉 =
∫

R2
â

∫
R

v(x)
(
W (s, t)u

)
(x) dx ds dt

=
∫

R3
â(s, t)v(x) e−

i
2 st~(

U(t)V (s)u
)
(x) dx ds dt

=
∫

R3
â(s, t)v(x) e−

i
2 st~ eis(x+t~) u(x + t~) dx ds dt

=
1
~

∫
R3

â(s,
t

~
)v(x)eis(x+t/2) u(x + t) dx ds dt

=
1

2π~

∫
R3

a
(
x +

t

2
, ξ

)
v(x)e−

i
~ tξu(x + t) dx dξ dt

=
1

2π~

∫
R3

v(x)e−
i
~ tξa

(x

2
+

(x + t

2
, ξ

))
u(x + t) dx dξ dt

=
1

2π~

∫
R3

v(x)e
i
~ (x−y)ξa

(x + y

2
, ξ

)
u(y) dx dy dξ

=
1

2π~

〈
v,

∫
R2

e
i
~ (•−y)ξa

(•+ y

2
, ξ

)
u(y) dy dξ

〉
,

hence [
qW(a)u

]
(x) =

1
2π~

∫
R2

e
i
~ (x−y)ξa

(x + y

2
, ξ

)
u(y) dy dξ, (2.7)

which is the form of the Weyl quantization as it usually can be found in the litera-
ture. As one checks immediatley, qW(a) is a densly defined (in general unbounded)
linear operator on L2(R) which is symmetric, in case a is a real-valued function.
If one interprets the right hand side of Eq. (2.7) as an oscillatory integral (see
[GrSj]), then Eq. (2.7) defines even for symbols a ∈ S∞(R) (cf. Sec. 4) a quantized
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observable qW(a) which by definition then is a pseudodifferential operator on R.
By a standard argument in pseudodifferential calculus one shows that

qW(a) qW(a)− qW(b) qW(b) = −i~qW({a, b}) + o(~2) for a, b ∈ S∞,

which means that Weyl quantization satisfies Dirac’s quantization condition up to
higher orders in ~ or in other words that the algebra of pseudodifferential operators
is a deformation of the algebra of symbols in direction of the Poisson bracket. Let
us now explain the concept of a deformation quantization in some more detail.

3. Deformation quantization

Definition 3.1 ([BFFLS]). By a deformation quantization of a symplectic man-
ifold (M,ω) one understands an associative and C[[~]]-bilinear product ? on the
space A~ := C∞(M)[[~]] of formal power series in the (now formal) variable ~ and
with coefficients in the space C∞(M) such that the following axioms hold true:

(1) There exist bidifferential operators ck on M such that a?b =
∑∞

k=0 ck(a, b) ~k

for all a, b ∈ C∞(M) and such that c0 is the commutative pointwise product
of smooth functions on M .

(2) One has a ? 1 = 1 ? a = a for all a ∈ C∞(M).
(3) The commutation relation

[a, b]? = −i~{a, b}+ o(~2)

is satisfied for all a, b ∈ C∞(M), where [a, b]? := a ? b− b ? a.

The product ? is also called a star-product on M .

Example 3.2. Consider a finite dimensional symplectic vector space (V, ω), and
let

{−,−} : C∞(V )⊗ C∞(V ) → C∞(V ), a⊗ b 7→
∑

1≤i,j≤dim V

Πij
∂a

∂xi

∂b

∂xj

be its Poisson bracket, where (xi)1≤i≤dim V denote some coordinates of V . Since
the standard Poisson bivector Π :=

∑
Πij

∂
∂xi

⊗ ∂
∂xj

is constant, the operator

Π̂ : C∞(V )⊗ C∞(V ) → C∞(V )⊗ C∞(V ), a⊗ b →
∑

1≤i,j≤2n

Πij
∂a

∂xi
⊗ ∂b

∂xj

is well-defined. Denoting by µ the pointwise product of functions, one can now put

? : C∞(V )[[~]]⊗C∞(V )[[~]] → C∞(V )[[~]], a⊗b 7→
∑
k∈N

(−i~)k

k!
µ
(
Π̂k(a⊗b)

)
(3.1)

and thus obtains a star product on C∞(V ), the so-called Weyl–Moyal-product. It
is immediately checked that (C∞(V )[[~]], ?) is a deformation qunatization in the
above sense.

By construction, the Weyl–Moyal-product makes sense also on the space WV of
formal power series in ~ with formal power series at the origin of V as coefficients.
One calls the resulting algebra (WV, ?) the formal Weyl algebra of V , and obtains
an epimorphism of algebras (C∞(V )[[~]], ?) → (WV, ?) given by formal power series
expansion at the origin in each degree of ~.
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The existence of a star product on an arbitrary symplectic manifold was an
open mathematical problem for almost ten years after the article [BFFLS] had
appeared, and was settled by independant methods in the papers [deWiLe] and
[Fe94]. Another ten years passed until the existence of star products on Poisson
could be proved in [Ko].

Let us briefly sketch the main idea of the proof by Fedosov [Fe96], since his
approach contains essential tools which lead to algebraic index theory. Consider a
symplectic manifold (M,ω) and its tangent bundle TM . Since each of the tangent
spaces TpM , p ∈ M is a symplectic vector space, one can form the bundle of formal
Weyl algebras WM :=

⊔
p∈M WTpM . Note that the bundle of formal Weyl agebras

is well-defined because the symplectic group acts as automorphisms on the formal
Weyl algebra. Now consider the bundle of forms Λ•WM := WM ⊗ Λ•M . Its
space of smooth sections Ω•W(M) obviously is a noncommutative algebra with
product denoted by •. The fundamental observation by Fedosov was that for an
appropriate flat graded derivation D with respect to the product • on Ω•W(M) the
subalgebra

WD(M) := {s ∈ Ω0W(M) | Ds = 0}
of flat sections is linearly isomorphic to the space of formal power series C∞(M)[[~]].
Via the resulting isomorphism q : C∞(M)[[~]] →WD(M) one can then push down
the product on WD(M) to C∞(M)[[~]] and thus obtains a star product on M . The
flat connection needed for this construction has the form

D = ∇+ [A,−],

where ∇ is a symplectic connection on M , i.e. ∇ω = 0, [−,−] is the commutator
with respect to the product •, and A ∈ Ω1W(M). The cohomology class of the
curvature

Ω := ∇A +
1
2
[A,A]

(note that it is a formal power series in ~) classifies the star product ? up to
equivalence.

For the application of deformation quantization to index theory, the notion of
a trace on a deformation quantization

(
C∞cpt(M)[[~]], ?

)
is crucial. By a that one

understands a linear functional tr : C∞cpt(M)[[~]] → C[[~, ~−1] which vanishes on
commutators. The following result provides essential information on the existence
and uniqueness of such traces.

Proposition 3.3 ([NeTs95, Fe96]). The space of traces on a deformation quanti-
zation

(
C∞cpt(M)[[~]], ?

)
over a connected symplectic manifold M is one-dimensional.

4. Pseudodifferential operators

Next we will set up Weyl quantization within the language of pseudodifferential
operators. Before we come to the details of this let us recall some basics of that
theory.

Let U ⊂ Rn be open. By a symbol on U ×RN of order m ∈ R one understands a
function a ∈ C∞(U ×RN ) such that for every compact K ⊂ U and all multi-indices
α ∈ Nn and β ∈ NN there exists a CK,α,β > 0 such that∣∣∣∂α

x ∂β
ξ a(x, ξ)

∣∣∣ ≤ CK,α,β (1 + ||ξ||)m−|β| for all (x, ξ) ∈ K × RN . (4.1)
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The space of such symbols is denoted by Sm(U, RN ). Obviously, one can easily
generalize the notion of a symbol of order m to smooth maps a : E → R defined
on a vector bundle E → M by requiring Eq. (4.1) to hold locally in bundle charts.
For every manifold X we denote the space of symbols of order m on the cotan-
gent bundle T ∗X by Sm(X). Moreover, one puts S∞(X) :=

⋃
m∈R Sm(X) and

S−∞(X) :=
⋂

m∈R Sm(X).
A pseudodifferential operator over U ⊂ Rn now is a linear operator A : C∞cpt(U) →

C∞(U) which can be represented as an oscillatory integral (cf. [GrSj, Sec. 1])

Au(x) =
1

(2π)n

∫
Rn

∫
U

ei〈x−y,ξ〉a(x, y, ξ) u(y) dy dξ, (4.2)

where u ∈ C∞cpt(U) and a ∈ Sm(U × U, Rn) for some m ∈ R ∪ {±∞}. The space
of thus defined pseudodifferential operators of order m will be denoted by Ψm(U).
More generally, if X is a manifold, the space Ψm(X) of pseudodifferential operators
of order m on X consists of all linear operators A : C∞cpt(X) → C∞(X) which can
be written in the form

Au = A0u +
∑
j∈J

ϕj

(
Aj

(
(ϕju) ◦ x−1

j

))
◦ xj ,

where the xj , j ∈ J run through an atlas of X, (ϕj)j∈J is a locally finite smooth
partition of unity subordinate to the domains of the charts ϕj , the Aj are pseudo-
differential operators on Rdim X of order m, and finally A0 is a smoothing operator,
which means that its Schwartz kernel is smooth. Let us restrict our considerations
now to the space Ψ∞

ps (X) of properly supported pseudodifferential which means of
all pseudodifferential operators A such that the projections pr1/2 : suppKA → X
of the support of the Schwartz kernel of A on the first resp. second coordinate
are proper maps. Since every properly supported pseudodifferential operator maps
functions with compact support to functions with compact support, Ψ∞

ps (X) turns
out to be an algebra which, as we will see in the following, can be interpreted as a
quantization of the symbol algebra on TX.

Let us provide some details. After the choice of a riemannian metric on X and
fixing an ordering parameter s ∈ [0, 1], define for every symbol a ∈ Sm(X) and
~ ∈ R∗ a quantization qs(a) : C∞cpt(X) → C∞cpt(X) by

[qs(a)u](x) =
1

(2π~)n

∫
T∗X

χ(x, y) e
i
~ 〈exp−1

y (x),ξ〉a
(
τgs(x,y),yξ

)
u(y) dydξ. (4.3)

The ingredients of this formula are given as follows. As usual, exp denotes the
exponential function with respect to the riemannian metric on X, and χ is a prop-
erly supported cut-off function around the diagonal of X ×X such that exp−1

y (x)
is defined for all (x, y) ∈ suppχ. By gs(x, y) we mean the s-midpoint between x
and y, or in other words the point exp

(
s · exp−1

x (y)
)
. For x and y close enough

we denote by τx,y the parallel transport in T ∗X from T ∗
y X to T ∗

x X along the geo-
desic joining x and y. Finally, dy dξ stands for the Liouville volume element on the
symplectic manifold T ∗X. One checks immediately (cf. [Pf98, Vo]) that qs(a) is
a (properly supported) pseudodifferential operator of order m. In case s = 0 one
calls it the standard order quantization of the symbol a, if s = 1

2 , one obtains Weyl
quantization on the riemannian manifold X. The reader is invited to check that
on the cotangent bundle of R, q 1

2
coincides with the Weyl quantization qW from

Eq. (2.7) (up to some negligible smoothing operator).
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The quantization map qs has a pseudoinverse, namely the symbol map σs :
Ψ∞

ps (X) → S∞(X) which is defined by

σs(A)(x, ξ) =
∫

TxX

χs(x, v) e
i
~ 〈v,ξ〉 KA

(
expx(−sv), expx((1− s)v)

)
ρs(x, v)dθx(v),

(4.4)
where KA is the Schwartz kernel of the operator A, the cut-off function χs is defined
by χs(x, v) := χ

(
expx(−sv), expx((1 − s)v)

)
, θx is the euclidean volume element

of TxX induced by the riemannian metric on X, and the metric factor ρs satisfies
ρs(x, v) = ρ

(
expx(−sv), expx((1− s)v)

)
with ρ(x, expx v)θx =

(
exp∗x µ

)
(v), and µ

the riemannian volume element on X. Then one has

σs ◦ qs(a)− a ∈ S−∞(X) and qs ◦ σs(A)−A ∈ Ψ−∞
ps (X) (4.5)

for all symbols a and pseudodifferential operators A on X, which shows that they
are inverse to each other up to smoothing operators resp. symbols. Moreover, one
can prove (cf. [Pf98]) that

[qs(a), qs(b)] = −i~ qs({a, b}) + o(~2) (4.6)

for all symbols a, b. This means that each qs and in particular Weyl quantization
qW := q 1

2
induces a deformation quantization of the cotangent bundle TX.

Another usefull feature of the quantization qs is that it allows to compute the
operator trace of qs(a) for every symbol a of order m < dim X. According to
[Pf98, Vo] this trace is given by

tr qs(a) =
1

(2π~)dim X

∫
T∗X

aωdim X , (4.7)

where ω denotes the canonical symplectic form on the cotangent bundle T ∗X.

5. The algebraic index theorem

Let us first recall some basic notions from index theory of Fredholm operators.
Assume to be given two Hilbert spaces H1, H2 and a Fredholm operator F : H1 →
H2, which means that F is a linear operator which has finite dimensional kernel
and cokernel. Its index is then defined as the integer

ind F := dim kerF − dim coker F. (5.1)

The index has the following crucial properties:
• it is homotopy invariant, i.e.

ind F (0) = ind F (1)

for every continuous path F : [0, 1] → Fred(H1,H2) of Fredholm operators,
• it is additive with respect to composition, i.e.

ind(F1 ◦ F2) = indF1 + ind F2

for two composable Fredholm operators F1 and F2, and finally
• the index is invariant under compact perturbations, i.e.

ind(F + K) = indF

for every Fredholm operator and every compact operator K from H1 to H2.
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Every Fredholm operator F : H1 → H2 has a pseudoinverse R : H2 → H1,
which in other words means that idH1 −R ◦ F and idH2 −R ◦ F are both compact
operators. One can even choose R such that these operators are of trace class.
Then one can compute the index of F by the following formula (cf. [Fe96]):

ind F = tr(idH1 −R ◦ F )− tr(idH2 −R ◦ F ). (5.2)

In the theory of linear partial differential equations, Fredholm operators appear
abundantly. Namely, if E → X is a (metric) vector bundle over a compact (rie-
mannian) manifold X, and D : Γ∞(E) → Γ∞(E) an elliptic differential operator
(which means that its principle symbol is invertible) then it induces a Fredholm op-
erator between appropriate Sobolev completions of Γ∞(E). In particular, D then
has a finite index, and this index does not depend on the particular choice of a
Sobolev completion. By the celebrated index theorem of Atiyah–Singer [AtSi],
the index of D can be computed by topological data as follows:

ind D = (−1)dim X

∫
X

Ch(σp(D)) td(TCX), (5.3)

where σp(D) denotes the principal symbol of the differential operator D, Ch its
Chern character and td(TCX) is the Todd class of the complexified tangent bundle.

As it has been observed by Fedosov [Fe96] and Nest–Tsygan [NeTs95], an
“algebraic” version of this index theorem can be formulated and proved within the
framework of deformation quantization. Recall that the the index of an elliptic
operator can be computed by Eq. (5.2). If one interprets a deformation quantiza-
tion as a kind of “formal pseudodifferential calculus”, it makes sense to consider
elliptic elements in the deformed algebra and define an algebraic index for these
objects. More precisely, given a symplectic manifold M with a star product ?,
one understands by an elliptic pair in C∞(M)[[~]] a pair of projections P,Q in the
matrix algebra over (C∞(M)[[~]], ?) such that the difference P − Q has compact
support. This means in particular, that every elliptic pair (P,Q) determines an
element [P ]− [Q] of the K-theory of the deformed algebra. The algebraic index of
the K-theory class [P ]− [Q] of an elliptic pair is defined by

inda

(
[P ]− [Q]

)
:= tr(P −Q), (5.4)

where tr is the (up to normalization) unique trace on the matrix algebra over
C∞(M)[[~]] (cf. Prop. 3.3). Note that the index is indeed well-defined on the K-
theory of C∞(M)[[~]].

The space of equivalence classes [P ] − [Q] of elliptic pairs is isomorphic to the
space of equivalence classes of elliptic quadruples. These objects were introduced
by Fedosov [Fe96] and are the natural generalizations of elliptic operators to star
product algebras. More precisely, an elliptic quadruple is a quadruple (D,F, P̃ , Q̃)
of elements of the matrix algebra over C∞(M)[[~]] such that the following holds:

(1) P̃ and Q̃ are projections.
(2) The elements P̃ −D ? R and Q̃−R ? D have both compact support.

The element D of an elliptic quadruple hereby generalizes an elliptic pseudodiffer-
ential operator on a closed manifold, and F can be interpreted as its quasi-inverse.

By Eq. (5.2), the following definition of the algebraic index of an (equivalence
class of an) elliptic quadruple appears to be reasonable:

inda

(
[D,F, P̃ , Q̃]

)
:= tr(Q̃−R ? D)− tr(P̃ −D ? R). (5.5)
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In fact, one can show that the thus defined algebraic index is compatible with
the algebraic index on elliptic pairs under the mentioned isomorphism between
equivalence classes of elliptic pairs and of elliptic quadruples.

There is another remark in order, here. For an elliptic pair (P,Q) the coefficients
(P0, Q0) of order 0 in the expansion in powers of ~ are obviously projections in the
matrix algebra over C∞(M), and the virtual bundle [P0]− [Q0] defines a K-theory
class of M . This map turns out to be an isomorphism between K-theories, which
shows that K-theory is invariant under deformation (cf. [Ro], [Fe96, Sec. 6.1]).

The main result of algebraic index theory is the theorem below. By application
of this algebraic index theorem to cotangent bundles of compact riemannian man-
ifolds and the deformation quantization induced by Weyl quantization one obtains
another proof of the index formula by Atiyah–Singer.

Theorem 5.1 ([NeTs95, Fe96]). Let M be a symplectic manifold with a deforma-
tion quantization ?. The algebraic index of an elliptic pair [P ] − [Q] is then given
by

inda

(
[P ]− [Q]

)
=

∫
M

Ch
(
[P0]− [Q0]

)
exp

(
− Ω

2π~

)
Â(M), (5.6)

where Â(M) denotes the Â-genus of M , and Ω the characteristic class of the star
product on M

The proof of the algebraic index theorem is quite involving. In the approach by
Nest–Tsygan, methods from cyclic homology theory and Lie algebra cohomology
are used intensively. We refer to the original literature for that.

6. The algebraic index theorem for orbifolds

The problem to generalize index theorems to spaces more general than (compact)
manifolds has been an active area of mathematical research since many years. For
orbifolds, a class of singular spaces which has attained much interest in geometry
and mathematical physics, an algebraic index theorem can be proved.

In local charts, orbifolds are represented as quotients of manifolds by finite
groups. Globally, and that is the approach we use in our setup, orbifolds can
be presented as orbits of proper étale Lie groupoids G (see [Mo] for details). The
concepts of a deformation quantization, of vector bundles, and of K-theory can all
be generalized to orbifolds by requiring the objects (like a star product or a vector
bundle) to be invariant on the representing proper étale groupoid. For example,
the orbifold K-theory K0

orb(X) of an orbifold X consists of equivalence classes of
equivariant virtual bundles on the representing groupoid.

A quite usefull object associated to an orbifold X is its inertia orbifold X̃. Lo-
cally, X̃ consists of all fixed point manifolds of the locally representing orbifold
charts. The inertia orbifold carries a lot of information about the singularities of
the orbifold. The connected components of the inertia orbifold X̃ are sometimes
called the sectors of the orbifold X.

The orbifold case is different to the manifold case in particular by one important
aspect. The dimension of traces on a deformation quantization on a symplectic
orbifold is in general not one (even if X is connected), but given by the num-
ber of sectors [NePfPoTa]. This means that one has to single out a particular
trace to define the algebraic index for a deformation quantization on an orbifold.
Fortunately, there exists a kind of “universal” trace on an orbifold, which captures
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from each sector a normalized contribution. With that universal trace the following
algebraic index formula can be proved.

Theorem 6.1 ([PfPoTa]). Let M be a symplectic orbifold presented by a proper
étale Lie groupoid G carrying a G-invariant symplectic form ω. Let ? be a star
product on M , and let E and F be G-vector bundles which are isomorphic outside a
compact subset of M . Then the following formula holds for the index of [E]− [F ] ∈
K0

orb(M):

tr∗
(
[E]− [F ]

)
=

∫
M̃

1
m

Chθ

(
RE

2πi −
RF

2πi

)
det

(
1− θ−1 exp(−R⊥

2πi )
) Â

(R⊥

2πi

)
exp

(
− ι∗Ω

2πi~

)
, (6.1)

where tr : C∞cpt[[~]]oG → C[[~, ~−1] is the universal trace on the convolution algebra
capturing from each sector one contribution, m is a locally constant combinatorial
function measuring the order of the isotropy group, and Ω is the characteristic
class of the deformation quantization. The symbol θ denotes the action of the local
isotropy groups, and Chθ

(
RE

2πi −
RF

2πi

)
is the equivariant Chern character which à

la Chern-Weil is determined by equivariant curvatures RE and RF . Finally R⊥

denotes the curvature of the normal bundle of the local embedding of X̃ into X.

Like in the manifold case one can construct a symbol calculus and Weyl quantiza-
tion for orbifolds. Since Weyl quantization on an orbifold X defines a deformation
quantization over the symplectic orbifold T ∗X, one can then derive an analytic
index formula from the algebraic index theorem for orbifolds. One then obtains the
Kawasaki index formula for orbifolds (see [Ka] and [Fa]).
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