
DEFORMATION THEORY

MARKUS J. PFLAUM

1. Introduction and historical remarks

In mathematical deformation theory one studies how an object in a certain cat-
egory of spaces can be varied in dependence of the points of a parameter space. In
other words, deformation theory thus deals with the structure of families of objects
like varieties, singularities, vector bundles, coherent sheaves, algebras or differen-
tiable maps. Deformation problems appear in various areas of mathematics, in
particular in algebra, algebraic and analytic geometry, and mathematical physics.
According to Deligne, there is a common philosophy behind all deformation prob-
lems in characteristic zero. It is the goal of this survey to explain this point of view.
Moreover, we will provide several examples with relevance for mathematical physics.

Historically, modern deformation theory has its roots in the work of Grothen-
dieck, M. Artin, Quillen, Schlessinger, Kodaira–Spencer, Kuranishi,
Deligne, Grauert, Gerstenhaber, and Arnol’d. The application of defor-
mation methods to quantization theory goes back to Bayen–Flato–Fronsdal–
Lichnerowicz–Sternheimer, and has lead to the concept of a star product on
symplectic and Poisson manifolds. The existence of such star products has been
proved by deWilde–Lecomte and Fedosov for symplectic and by Kontsevich
for Poisson manifolds.

Recently, Fukaya and Kontsevich have found a far reaching connection be-
tween general deformation theory, the theory of moduli and mirror symmetry. Thus,
deformation theory comes back to its origins, which lie in the desire to construct
moduli spaces. Briefly, a moduli problem can be described as the attempt to collect
all isomorphism classes of spaces of a certain type into one single object, the moduli
space, and then to study its geometric and analytic properties. The observations
by Fukaya and Kontsevich have lead to new insight into the algebraic geometry
of mirror varieties and their application to string theory.

2. Basic definitions and examples

Deformation theory is based on the notion of a ringed space, so we briefly recall
its definition.

Definition 2.1. Let k be a field. By a k-ringed space one understands a topological
space X together with a sheaf A of unital k-algebras on X . The sheaf A will be
called structure sheaf of the ringed space. In case each of the stalks Ax, x ∈ X , is a
local algebra, i.e. has a unique maximal ideal mx, one calls (X,A) a locally k-ringed
space. Likewise, one defines a commutative k-ringed space as a ringed space such
that the stalks of the structure sheaf are all commutative.
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Given two k-ringed spaces (X,A) and (Y,B), a morphism from (X,A) to (Y,B)
is a pair (f, ϕ), where f : X → Y is a continuous mapping and ϕ : f−1B → A
a morphism of sheaves of algebras. This means in particular that for every point
x ∈ X there is a homomorphism of algebras ϕx : Bf(x) → Ax induced by ϕ. Under
the assumption that both ringed spaces are local, (f, ϕ) is called a morphism of
locally ringed spaces, if each ϕx is a homomorphism of local k-algebras, i.e. maps
the maximal ideal of Bf(x) to the one of Ax.

Clearly, k-ringed spaces (resp. locally or commutative k-ringed spaces) together
with their morphisms form a category. The following is a list of examples of ringed
spaces, in particular of those which will be needed later.

Example 2.2. (1) Denote by C∞ the sheaf of smooth functions on R
n, by Cω

the sheaf of real analytic functions, and let O be the sheaf of holomorphic
functions on Cn. Then (Rn, C∞), (Rn, Cω) and (Cn,O) are ringed spaces
over R resp. C.

(2) A differentiable manifold of dimension n can be understood as a locally
R-ringed space (M, C∞

M ) which locally is isomorphic to (Rn, C∞). Likewise,
a real analytic manifold is a ringed space (M, Cω

M ) which locally can be
modelled by (Rn, Cω), and a complex manifold is an (M,OM ) which locally
looks like (Cn,O).

(3) Let D be a domain in Cn, and J an ideal sheaf in OD of finite type which
means that J is locally finitely generated over OD. Let Y be the support
of the quotient sheaf OD/J . The pair (Y,OY ), where OY denotes the
restriction of OD/J to Y , then is a ringed space, called a complex model
space. A complex space now is a ringed space (X,OX) which locally looks
like a complex model space (cf. Grauert–Remmert [6]).

(4) Let k be an algebraically closed field, and An the affine space over k of
dimension n. Then A

n together with the sheaf of regular functions is a
ringed space.

(5) Given a ring A, its spectrum Spec A together with the sheaf of regular func-
tions OA forms a ringed space (cf. [10, Sec. II.2]). One calls (Spec A,OA)
an affine scheme. More generally, a scheme is a ringed space (X,OX) which
locally can be modelled by affine schemes.

(6) Finally, if A is a local k-algebra, the pair (∗, A) can be understood as a
locally ringed space. With A the algebra of formal power series k[[t]] over
one variable t, this example plays an important role in the theory of formal
deformations of algebras.

Definition 2.3. A morphism (f, ϕ) : (Y,B) → (P,S) of ringed spaces is called
fibered, if the following conditions are fulfilled:

(1) (P,S) is a commutative locally ringed space.
(2) f : Y → P is surjective.
(3) ϕy : Sf(y) → By maps Sf(y) into the center of By for each y ∈ Y .

The fiber of (f, ϕ) over a point p ∈ P then is the ringed space (Yp,Bp) defined by

Yp = f−1(p), Bp = B|f−1(p)/mp B|f−1(p),

where mp is the maximal ideal of Sp which acts on B|f−1(p) via ϕ.

A fibered morphism of ringed spaces can be pictured in the following way:
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Additionally to this intuitive picture, conditions (1) to (3) imply that the stalks By

are central extensions of By/mf(y)By by Sf(y).

Definition 2.4. Let (P,S) be a commutative locally ringed space over a field
k with P connected, let ∗ be a fixed point in P , and (X,A) a k-ringed space.
A deformation of (X,A) over the parameter space (P,S) with distinguished point
∗ then is a fibered morphism (f, ϕ) : (Y,B) → (P,S) over k together with an
isomorphism (i, ι) : (X,A) → (Y∗,B∗) such that for all p ∈ P and y ∈ f−1(p) the
homomorphism ϕy : Sp → By is flat.

The condition of flatness in the definition of a deformation serves as a substitute
for “local triviality” and works also in the presence of singularities. See Palamodov
[14, Sec. 3] for a discussion of this point.

In the remainder of this section we now provide a list of some of the most impor-
tant deformation problems in mathematics, and show how these can be formulated
within the language from above.

2.1. Products of k-ringed spaces. Let (X,A) be any k-ringed space and (P,S)
a k-scheme. For any closed point ∗ ∈ P the product (X × P,B) = (X,A)×k (P,S)
then is a flat deformation of (X,A) with distinguished point ∗. This can be seen
easily from the fact that B(x,p) = Ax ⊗k Sp for every x ∈ X and p ∈ P .

2.2. Families of matrices as deformations. Let (P,OP ) be a complex space
with distinguished point ∗ and AP : P → Mat(n × n, C) a holomorphic family
of complex n × n-matrices over P . By the following construction, AP can be
understood as a deformation, more precisely as a deformation of the matrix A :=
AP (∗). Let Y be the graph of AP in the product space P × Mat(n × n, C) and
f : Y → P be the restriction of the projection onto the first coordiante. Define the
sheaf B as the inverse image sheaf f−1S, and let ϕ be the sheaf morphism which
for every y ∈ Y is induced be the identity map ϕy : Sf(y) → By := Sf(y). It is

then immediately clear that (f, ϕ) is a deformation of the fiber f−1(∗) and that
this fiber coincides with the matrix A.

Now let A be an arbitrary complex n × n-matrix, and choose a GL(n, C)-slice
through A, i.e. a submanifold P containing A which is transversal to the GL(n, C)-
orbit through A. Hereby, it is assumed that GL(n, C) acts by the adjoint action on
Mat(n×n, C). The family AP given by the canonical embedding P →֒ Mat(n×n, C)
now is a deformation of A. The germ of this deformation at ∗ is versal in the sense
defined in the next section.
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2.3. Deformation of a scheme à la Grothendieck. Assume that (P,S) is a
connected scheme over k. A deformation of a scheme (X,A) then is a deformation
(f, ϕ) : (Y,B) → (P,S) in the sense defined above together with the requirement
that f : Y → P is a proper map, i.e. f−1(K) is compact for every compact K ⊂ P .
As a particular example consider the k-scheme Y = Spec k[x, y, t]/(xy − t]. It gives
rise to a fibration Y → Spec k[t], whose fibers Ya with a ∈ k are hyperbola xy = a,
when a 6= 0, and consist of the two axes x = 0 and y = 0, when a = 0. For k = R

this deformation can be illustrated by the following picture.

y

x a=0.5

a=1

a=0

For further information on this and similar examples see Hartshorne [10], in
particular Example 3.3.2.

2.4. Deformation of a complex space. According to Grothendieck one un-
derstands by a deformation of a complex space (X,A) a morphism of complex
spaces (f, ϕ) : (Y,B) → (P,S) which is both a proper flat morphism of complex
spaces and a deformation of (X,A) as a ringed space. In case (X,A) and (P,S) are
complex manifolds and if P is connected, each of the fibers Yp is a compact com-
plex manifold. Moreover, the family (Yp)p∈P then is a family of compact complex
manifolds in the sense of Kodaira–Spencer (cf. Palamodov [14]).

2.5. Deformation of singularities. Let p be a point of some Cn. Two complex
spaces (X,OX) ⊂ (Cn,O) and (X ′,OX′) ⊂ (Cn,O) with x ∈ X ∩ X ′ are then
called germ-equivalent at x, if there exists an open neighborhood U ∈ C

n of x such
that X ∩ U = X ′ ∩ U . Obviously, germ-equivalence at x is an equivalence relation
indeed. We denote the equivalence class of X by [X ]x. Clearly, if [X ]x = [X ′]x,
then one has OX,x = OX′,x for the stalks at x. By a singularity one understands
a pair ([X ]x,OX,x). In the literature such a singularity is often denoted by (X, x).
The singularity (X, x) is called non-singular or regular, if OX,x is isomorphic to
an algebra of convergent power series C{z1, · · · , zd}. A deformation of a com-
plex singularity (X, x) over a complex germ (P, ∗) is a morphism of ringed spaces
([Y ]x,OY,x) → ([P ]∗,OP,∗) which is induced by a holomorphic map and which is
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a deformation of ([X ]x,OX,x) as a ringed space. See Artin [1] and the overview
article by Greuel [9] for further details and a variety of examples.

2.6. First order deformation of algebras. Consider a k-algebra A and the
truncated polynomial algebra S = k[ε]/ε2k[ε]. Furthermore let α : A × A → A be
a Hochschild 2-cocycle of A, in other words assume that the relation

a1 α(a2, a3) − α(a1a2, a3) + α(a1, a2a3) − α(a1, a2) a3 = 0 (2.1)

holds for all a1, a2, a3 ∈ A. Then one can define a new k-algebra B, whose un-
derlying linear structure is isomorphic to A ⊗k S and whose product is given by
the following construction: Any element b ∈ B can be written uniquely in the
form b = a0 + a1 ε with a0, a1 ∈ A. Then the product of b = a0 + a1 ε ∈ B and
b′ = a′

0 + a′
1 ε ∈ B is given by

b · b′ = a0 a′
0 + [α(a0, a

′
0) + a0a

′
1 + a1a

′
0] ε. (2.2)

By condition (2.1), this product is associative. One thus obtains a flat deformation
∆ : S → B of the algebra A and calls it the first order or infinitesimal deformation
of A along the Hochschild cocycle α. For further information on this and the con-
nection between deformation theory and Hochschild cohomology see the overview
article [7] by Gerstenhaber–Schack.

2.7. Formal deformation of an algebra. Let us generalize the preceeding ex-
ample and explain the concept of a formal deformation of an algebra by Gersten-
haber. Assume again A to be an arbitrary k-algebra and choose bilinear maps
αn : A×A → A for n ∈ N such that α0 is the product on A and α1 is a Hochschild
cocycle. Furthermore let S be the algebra k[[t]] of formal power series in one vari-
able over k. Then define on the linear space B = A[[t]] of formal power series in
one variable with coefficients in A the following bilinear map:

⋆ : B × B → B,

(

∑

n∈N

an tn,
∑

n∈N

bn tn

)

7→
∑

n∈N

∑

k,l,m∈N

k+l+m=n

αm(ak, bl) tn. (2.3)

If B together with ⋆ becomes a k-algebra or in other words if ⋆ is associative, one
can easily see that it gives a flat deformation of A over S = k[[t]]. In that case one
says that B is a formal deformation of A by the family (αn)n∈N

. Contrarily to the
preceeding example there might not exist for every Hochschild cocycle α on A a
formal deformation B of A defined by a family (αn)n∈N

such that α1 = α. In case it
exists, we will say the deformation B of A is in direction of α. If the third Hochschild
cohomology group H3(A, A) vanishes, there exists for every Hochschild cocycle α
on A a deformation B of A in direction of α. See again Gerstenhaber–Schack
[7] for further information.

2.8. Formal deformation on symplectic and Poisson manifolds. Let us con-
sider the last two examples for the case, where A is the algebra C∞(M) of smooth
functions on a symplectic or Poisson manifold M . Then the Poisson bracket { , }
gives a Hochschild cocycle on C∞(M). There exists a first order deformation of
C∞(M) along 1

2i
{ , } and, even though HH3(A, A) might not always vanish, a

deformation quantization of M , that means a formal deformation of C∞(M) in di-
rection of the Poisson bracket 1

2i
{ , }. For the symplectic case, this fact has been

proven first by deWilde–Lecomte using methods from Hochschild cohomology
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theory. A more geometric and intuitive proof has been given by Fedosov. The
Poisson case has been settled in the work of Kontsevich (see also Sec. 5.4).

2.9. Quantized universal enveloping algebras according to Drinfeld. A
quantized universal enveloping algebra for a complex Lie algebra g is a Hopf algebra
A over C[[t]] such that A is a topologically free C[[t]]-module (i.e. A = (A/tA)[[t]] as
left C[[t]]-module) and A/tA is the universal enveloping algebra Ug of g. Because A
is a topologically free C[[t]]-module, A is a flat C[[t]]-module and thus a deformation
of Ug over C[[t]]. See Drinfel’d [4] and the monograph [11] by Kassel for further
details and examples of quantized universal enveloping algebras.

2.10. Quantum plane. Consider the tensor algebra T =
⊕

n∈N

(

R2
)⊗n

of the 2-

dimensional real vector space R2, and let (x, y) be the canonical basis of R2. Then
form the tensor product sheaf TC∗ = T ⊗R OC∗ and let IC∗ be the ideal sheaf in
TC∗ generated by the relation

x ⊗ y − z y ⊗ x = 0, (2.4)

where z : C∗ → C is the identity function. The quotient sheaf B = BC∗ = TC∗/IC∗

then is a sheaf of C-algebras and an OC∗ -module. Using Eq. (2.4) now move all
occurances of x in an element of BC∗ to the right of all y’s. Since 1

z
is an element

of O(C∗), one can thus show that BC∗ is a free OC∗ -module. Hence BC∗ is flat over
OC∗ . Further it is easy to see that for every q ∈ C∗ the C-algebra Aq = Bq/mqBq

is freely generated by elements x, y with relations

x ⊗ y − q y ⊗ x = 0. (2.5)

We call Aq the q-deformed quantum plane and B = B(C∗) the over C∗ universally
deformed quantum plane. Altogether one can interpret B as a deformation of Aq

over C∗, in particular as a deformation of A1 = T ⊗R C = C[x, y], the algebra of
complex polynomials in two generators.

In the same way one can deform function algebras on higher dimensional vector
spaces as well as function algebras on certain Lie groups. This way one obtains
the quantum group SUq(2) as a deformation of a Hopf algebra of functions on
SU(2). See for example the work of Faddeev–Reshetikhin–Takhtajan, Manin
and Wess–Zumino for more information on q-deformations of vector spaces, Lie
groups, differential calculi and all that.

3. Versal deformations

In this section and the following ones we consider only germs of deformations,
i.e. deformations over parameter spaces of the form (∗, S). This means in particular
that the structure sheaf only consists of its stalk S at ∗, a commutative local k-
algebra. Let us now suppose that the sheaf morphism ϕ : (Y,B) → (∗, S) (over
the canonical map Y → ∗) is a deformation of the ringed space (X,A) and that
τ : T → S is a homomorphism of commutative local k-algebras. Then the sheaf
morphism τ∗ϕ : B ⊗S T → T with (τ∗ϕ)y(t) = 1 ⊗ t for y ∈ Y and t ∈ T
is a deformation of (X,A) over the parameter space (∗, T ). One says that the
deformation τ∗ϕ is induced by the homomorphism τ .

Definition 3.1. A deformation ϕ : (Y,B) → S of (X,A) is called versal, if every
(germ of a) deformation of (X,A) is isomorphic to a deformation germ induced by
a homomorphism of k-algebras τ : T → S. A versal deformation is called universal,
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if the inducing homomorphism τ : T → S is unique, and miniversal, if S is of
minimal dimension.

Example 3.2. (1) In Sec. 2.2, the construction of a versal deformation of a
complex matrix A has been sketched.

(2) According to Kuranishi, every compact complex manifold has a versal
deformation by an analytic germ. See [13] for a detailed exposition and
Sec. 5.3 for a description of the principal ideas.

(3) Grauert has shown that for isolated singularities there exists a versal
analytic deformation.

(4) By the work of Douady–Verdier, Grauert and Palamodov one knows
that for every compact complex space there exists a miniversal analytic
deformation. One of the essential methods in the existence proof hereby is
Palamodov’s construction of the cotangent complex (see [14]).

(5) Bingener [3] has further established Palomodov’s approach and thus
could provide a unified and quite general method for constructing versal
deformations in analytic geometry.

(6) Fialowski–Fuchs have constructed miniversal deformations of Lie alge-
bras.

4. Schlessinger’s theorem

According to Grothendieck, spaces in Algebraic Geometry are represented by
functors from a category of commutative rings to the category of sets. In this pic-
ture, an affine algebraic variety X over the base field k and with coordinate ring
A is equivalently described by the functor Homalg(A,−) defined on the category of
commutative k-algebras. As will be shown by examples in the next section, versal
deformations are often encoded by functors representing spaces. More precisely,
a deformation problem leads to a so-called functor of Artin rings, which means a
covariant functor F from the category of (local) Artinian k-algebras to the category
of sets such that the set F (k) has exactly one element. The question now arises, un-
der which conditions the functor F is representable, i.e. there exists a commutative
k-algebra A such that F ∼= Homalg(A,−). In the work of Schlessinger [15], the
structure of functors of Artin rings has been studied in detail. Moreover, criteria
have been established, when such a functor is pro-prepresentable, that means can
be represented by a complete local algebra Â, where “completeness” is understood
with respect to the m-adic topology. Beacuse of its importance for deformation
theory, we will state Schlessinger’s theorem in this section. Before we come to its
details let us recall some notation.

Definition 4.1. By an Artinian k-algebra over a field k one understands a com-
mutative k-algebra R which satisfies the following descending chain condition:

(Dec) Every descending chain I1 ⊃ · · · ⊃ Ik ⊃ Ik+1 ⊃ · · · of ideals in R becomes
stationary.

Among other, an Artinian algebra R has the following properties:

(1) R is noetherian, i.e. satisfies the ascending chain condition.
(2) Every prime ideal in R is maximal.
(3) (Chinese Remainder Theorem) R is isomorphic to a finite product Πn

i=1Ri,
where each Ri is a local Artinian algebra.
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(4) Every maximal ideal m of R is nilpotent, i.e. mk = 0 for some k ∈ N.
(5) Every quotient R/mk with m maximal is finite dimensional.

Definition 4.2. Assume that f : B → A is a surjective homomorphism in the
category k-Alg l,Art of local Artinian k-algebras. Then f is called a small extension,
if ker f is a nonzero principal ideal (b) in B such that mb = (0), where m is the
maximal ideal of B.

Theorem 4.3. (Schlessinger [15, Thm. 2.11]) Let F be a functor of Artin rings
(over the base field k). Assume that A′ → A and A′′ → A are morphisms in
k-Alg

l,Art
, and consider the map

F (A′ ×A A′′) → F (A′) ×F (A) F (A′′). (4.1)

Then F is pro-representable, if and only if F has the following properties (H1) to
(H4).

(H1) The map (4.1) is a surjection, whenever A′′ → A is a small extension.
(H2) The map (4.1) is a bijection, when A = k and A′′ = k[ε].
(H3) One has dimk(tF ) < ∞ for the tangent space tF := F (k[ε]).
(H4) For every small extension A′ → A, the map

F (A′ ×A A′) → F (A′) ×F (A) F (A′)

is an isomorphism.

Suppose that the functor F satisfies conditions (H1) to (H4), and let Â be
an arbitrary complete local k-algebra. By Yoneda’s lemma, every element ξ =
proj lim

n∈N

ξn ∈ Â = proj lim
n∈N

Â/mnÂ induces a natural transformation

Homalg(Â,−) → F,
(

u : Â → R
)

7→ F (un)(ξn), (4.2)

where n ∈ N is chosen large enough such that the homomorphism u : Â → R factors
through some un : Â/mn → R. This is possible indeed, since R is Artinian. In the

course of the proof of Schlessinger’s theorem, Â and the element ξ ∈ Â are now
constructed in such a way that (4.2) is an isomorphism.

5. Differential graded Lie algebras and deformation problems

According to a philosophy going back to Deligne “every deformation problem
in characteristic 0 is controlled by a differential graded Lie algebra, with quasi-
isomorphic differential graded Lie algebras giving the same deformation theory”
(cf. Goldman–Millson [8, p. 48]). In the following we will explain the main idea
of this concept and apply it it to two particular examples.

5.1. Differential graded Lie algebras.

Definition 5.1. By a graded algebra over a field k one understands a graded k-
vector space A• =

⊕

k∈Z
Ak together with a bilinear map

µ : A• × A• → A•, (a, b) 7→ a · b = µ(a, b)

such that Ak ·Al ⊂ Ak+l for all k, l ∈ Z. The graded algebra A• is called associative,
if (ab)c = a(bc) for all a, b, c ∈ A•.

A graded subalgebra of A• is a graded subspace B• =
⊕

k∈Z
Bk ⊂ A• which is

closed under µ, a graded ideal is a graded subalgebra I• ⊂ A• such that I• ·A• ⊂ I•

and A• · I• ⊂ I•.
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A homomorphism between graded algebras A• and B• is a homogeneous map
f : A• → B• of degree 0 such that f(a · b) = f(a) · f(b) for all a, b ∈ A•.

From now on assume that k has characteristic 6= 2, 3. A graded Lie algebra then
is a graded k-vector space g• =

⊕

k∈Z
gk together with a bilinear map

[·, ·] : g• × g• → g•, (a, b) 7→ [a, b]

such that the following axioms hold true:

(1) [gk, gl] ⊂ gk+l for all k, l ∈ Z,
(2) [ξ, ζ] = −(−1)kl [ζ, ξ] for all ξ ∈ gk, ζ ∈ gl.
(3) (−1)k1k3 [[ξ1, ξ2], ξ3] + (−1)k2k1 [[ξ2, ξ3], ξ1] + (−1)k3k2 [[ξ3, ξ1], ξ2] = 0

for all ξi ∈ gki with i = 1, 2, 3.

By axiom (1) it is clear that a graded Lie algebra is in particular a graded algebra.
So the above defined notions of a graded ideal, homomorphism, etc. apply as well
to graded Lie algebras.

Example 5.2. Let A• =
⊕

k∈Z
Ak be a graded associative algebra. Then A•

becomes a graded Lie algebra with the bracket

[a, b] = ab − (−1)klba for a ∈ Ak and b ∈ Al.

The space A• regarded as a graded Lie algebra is often denoted by lie•(A•).

Definition 5.3. A linear map D : A• → A• defined on a graded algebra A• is
called a derivation of degree l, if

D(ab) = (Da)b + (−1)kla(Db) for all a ∈ Ak and b ∈ A•.

A graded (Lie) algebra A• together with a derivation d of degree 1 is called
a differential graded (Lie) algebra if d ◦ d = 0. Then (A•, d) becomes a cochain
complex. Since ker d is a graded subalgebra of A• and im d a graded ideal in ker d,
the cohomology space

H•(A•, d) = kerd/ im d

inherits the structure of a graded (Lie) algebra from A•.
Let f : A• → B• be a homomorphism of differential graded (Lie) algebras (A•, d)

and (B•, ∂). Assume further that f is a cochain map, i.e. that f ◦ d = ∂ ◦ f . Then
one calls f a quasi-isomorphism or says that the differential graded (Lie) algebras
A• and B• are quasi-isomorphic, if the induced homomorphism on the cohomology
level f : H•(A•, d) → H•(B•, ∂) is an isomorphism. Finally, a differential graded
(Lie) algebra (A•, d) is called formal, if it is quasi-isomorphic to its cohomology
(H•(A•, d), 0).

5.2. Maurer–Cartan equation. Assume that (g•, [·, ·], d) is a differential graded
Lie algebra over C. Define the space MC(g•) of solutions of the Maurer–Cartan
equation by

MC(g•) :=
{

ω ∈ g1 | dω −
1

2
[ω, ω] = 0

}

. (5.1)

In case the differential graded Lie algebra g• is nilpotent, this space naturally
possesses a groupoid structure, or in other words a set of arrows which are all
invertible. The reason for this is that under the assumption of nilpotency, the
space g0 is equipped with the Campbell–Hausdorff multiplication

g0 × g0 → g0, (X, Y ) 7→ log(exp X, expY ),
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and the group g0 acts on g1 by the exponential function. More precisely, in this
situation one can define for two objects α, β ∈ MC(g•) the space of arrows α → β
as the set of all λ ∈ g0 such that expλ · α = β.

We have now the means to define for every complex differential graded Lie algebra
g• its deformation functor Defg• . This functor maps the category of local Artinian
C-algebras to the category of groupoids and is defined on objects as follows:

Defg•(R) := MC(g• ⊗ m). (5.2)

Hereby, R is a complex local Artinian algebra, and m its maximal ideal. Note that
since R is Artinian, g• ⊗ m is a nilpotent differential graded Lie algebra, hence
Defg•(R) carries a groupoid structure as constructed above. Clearly, Defg• is also
a functor of Artin rings as defined in the previous section.

With appropriate choices of the differential graded Lie algebra g•, essentially all
deformation problems from Section 2 can be recovered via a functor of the form
Defg• . Below, we will show in some detail how this works for two examples, namely
the deformation theory of complex manifolds and the deformation quantization of
Poisson manifolds. But before we come to this, let us state a result which shows
how the deformation functor behaves under quasi-isomorphisms of the underlying
differential graded Lie algebra. This result is crucial in a sense that it allows
to equivalently describe a deformation problem with controlling g• by any other
differential graded Lie algebra within the quasi-isomorphism class of g•. So in
particular in the case, where the differential graded Lie algebra is formal, one often
obtains a direct solution of the deformation problem.

Theorem 5.4. (Deligne, Goldman–Millson) Assume that f : g• → h• is a
quasi-isomorphism of differential graded Lie algebras. For every local Artinian C-
algebra R the induced functor f∗ : Defg•(R) → Defh•(R) then is an equivalence of
groupoids.

5.3. The Kodaira–Spencer algebra controlling deformations of compact

complex manifolds. Let M be a compact complex n-dimensional manifold. Re-
call that then the complexified tangent bundle TCM has a decomposition into a
holomorphic tangent bundle T 1,0M and an antiholomorphic tangent bundle T 0,1M .
This leads to a decomposition of the space of complex n-forms into the spaces Ωp,qM
of forms on M of type (p, q). More generally, a smooth subbundle J0,1 ⊂ TCM

which induces a decomposition of the form TCM = J1,0 ⊕ J0,1, where J1,0 := J0,1,
is called an almost complex structure on M . Clearly, the decomposition of TCM
into the holomorphic and antiholomorphic part is an almost complex structure, and
an almost complex structure which is induced by a complex structure is called inte-
grable. Assume that an almost complex structure J0,1 is given on M and that it has
finite distance to the complex structure on M . The latter means that the restriction
̺0,1

J of the projection ̺ : TCM → T 0,1M along T 1,0M to the subbundle J0,1 is an

isomorphism. Denote by β the inverse of ̺0,1
J , and let ω ∈ Ω0,1(M, T 1,0M) be the

composition −̺ ◦ β. One checks immediately that every almost complex structure
with finite distance to the complex structure on M is uniquely characterized by a
section ω ∈ Ω0,1(M, T 1,0M) and that every element of Ω0,1(M, T 1,0M) comes from
an almost complex structure on M .
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As a consequence of the Newlander–Nirenberg theorem one can now show that
the almost complex structure J0,1 resp. ω is integrable, if and only if the equation

∂ω −
1

2
[ω, ω] = 0 (5.3)

is fulfilled. But this is nothing else than the Maurer–Cartan equation in the
Kodaira–Spencer differential graded Lie algebra

(

L•, ∂, [·, ·]
)

=
(

⊕

p∈N

Ω0,p(M, T 1,0M), ∂, [·, ·]
)

.

Hereby, Ω0,p(M, T 1,0M) denotes the T 1,0M -valued differential forms on M of type
(0, p), ∂ : Ω0,p(M, T 1,0M) → Ω0,p+1(M, T 1,0M) the Dolbeault operator, and [·, ·]
is induced by the Lie bracket of holomorphic vector fields. As a consequence of
these considerations, deformations of the complex manifold M can equivalently be
described by families (ωp)p∈P ⊂ L1 which satisfy Eq. (5.3) and ω∗ = 0. Thus it
remains to determine the associated deformation functor DefL• .

According to Schlessinger’s theorem, the functor DefL• is pro-representable.
Hence there exists a local C-algebra RL• complete with respect to the m-adic topol-
ogy such that

DefL•(R) = Homalg(RL• , R) (5.4)

for every local Artinian C-algebra R. Moreover, by the theorem of M. Artin, there
exists a “convergent” solution of the Maurer–Cartan equation, i.e. RL• can be
replaced in Eq. (5.4) by a ring RL• representing an analytic germ.

Theorem 5.5. (Kodaira–Spencer, Kuranishi) The ringed space
(

RL• , (0)
)

is
a miniversal deformation of the complex structure on M .

5.4. Deformation quantization of Poisson manifolds. Let A be an associative
k-algebra with char k = 0. Put for every integer k ≥ −1

gk := Homk(A
⊗(k+1), A).

Then g• becomes a graded vector space. Let us impose a differential and a bracket
on g•. The differential is the usual Hochschild coboundary b : gk → gk+1,

bf(a0 ⊗ . . . ⊗ ak+1) := a0 f(a1 ⊗ . . . ⊗ ak+1)+

+

k
∑

i=0

(−1)i+1f(a0 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ ak+1) + (−1)kf(a0 ⊗ . . . ⊗ ak) ak+1.

The bracket is the Gerstenhaber bracket

[·, ·] : gk1 × gk2 → gk1+k2 , [f1, f2] := f1 ◦ f2 − (−1)k1 k2f2 ◦ f1,

where f1 ◦ f2 (a0 ⊗ . . . ⊗ ak1+k2
) :=

:=

k1
∑

i=0

(−1)ik2f1

(

a0 ⊗ . . . ⊗ ai−1 ⊗ f2(ai ⊗ . . . ⊗ ai+k2
) ⊗ ai+k2+1 ⊗ . . . ⊗ ak1+k2

)

.

The triple (g•, b, [·, ·]) then is a differential graded Lie algebra.
Consider the Maurer–Cartan equation bγ − 1

2 [γ, γ] = 0 in g1. Obviously, it is
equivalent to the equality

a0γ(a1, a2) − γ(a0a1, a2) + γ(a0, a1a2) − γ(a0, a1)a2 =

=γ(γ(a0, a1), a2) − γ(a0, γ(a1, a2)) for a0, a1, a2 ∈ A.
(5.5)
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If one defines now for some γ ∈ g1 the bilinear map m : A × A → A by m(a, b) =
ab + γ(a, b), then (5.5) implies that m is associative, if and only if γ satisfies the
Maurer–Cartan equation.

Let us apply these observations to the case, where A is the algebra C∞(M)[[t]]
of formal power series in one variable with coefficients in the space of smooth
functions on a Poisson manifold M . By (a variant of) the theorem of Hochschild–
Kostant–Rosenberg and Connes one knows that in this case the cohomology of
(g•, b) is given by formal power series with coefficients in the space Γ∞(Λ•TM) of
antisymmetric vector fields. Now, Γ∞(Λ•TM) carries a natural Lie algebra bracket
as well, namely the Schouten bracket. Thus, one obtains a second differential
graded Lie algebra (Γ∞(Λ•TM)[[t]], 0, [·, ·]). Unfortunately, the projection onto
cohomology (g•, b) → Γ∞(Λ•TM)[[t]] does not preserve the natural brackets, hence
is not a quasi-isomorphism in the category of differential graded Lie algebras. It has
been the fundamental observation by Kontsevich that this defect can be cured
as follows.

Theorem 5.6. (Kontsevich [12]) For every Poisson manifold M the differen-
tial graded Lie algebra (g•, b, [·, ·]) is formal in the sense that there exists a quasi-
isomorphism (g•, b, [·, ·]) → (Γ∞(Λ•TM)[[t]], 0, [·, ·]) in the category of L∞-algebras.

Note that the theorem only claims the existence of a quasi-isomorphism in the
category of L∞-algebras or in other words in the category of homotopy Lie alge-
bras. This is a notion somewhat weaker than a differential graded Lie algebra, but
Thm. 5.4 also holds in the context of L∞-algebras.

Since the solutions of the Maurer-Cartan equation in (Γ∞(Λ•TM)[[t]], 0, [·, ·])
are exactly the formal paths of Poisson bivector fields on M , Kontsevich’s formality
theorem entails

Corollary 5.1. Every Poisson manifold has a formal deformation quantization.
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