Math 2002 Number Systems

 Homework Set 7

 Homework Set 7}

Fall 2022

Course Instructor: Dr. Markus Pflaum
Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.
Problem 1: Given $p \in \mathbb{N}$ with $p \geq 2$ define the relation \sim_{p} of congruence $\bmod p$ for integers as follows:

$$
m \sim_{p} n \quad \text { if and only if there exists } k \in \mathbb{Z} \text { such that } p \cdot k=m-n .
$$

If m is congruent $n \bmod p$ one also writes $m \equiv n \bmod p$.
(a) Show that congruence $\bmod p$ is an equivalence relation on \mathbb{Z}. Denote for each $m \in \mathbb{Z}$ by \bar{m} its equivalence class and by $\mathbb{Z} / p \mathbb{Z}$ the set of equivalence classes.
(b) Verify that the following maps are well-defined:

$$
\begin{align*}
&+: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \\
& \quad: \mathbb{Z} / p \mathbb{Z},(\bar{m}, \bar{n}) \mapsto \overline{m+n} \tag{2P}\\
& \quad: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z},(\bar{m}, \bar{n}) \mapsto \overline{m \cdot n} .
\end{align*}
$$

(c) Prove that for p a prime number the sets $\mathbb{Z} / p \mathbb{Z}$ together with the above maps + and \cdot and the elements $\overline{0}$ and $\overline{1}$ are fields. What is the cardinality of the field $\mathbb{Z} / p \mathbb{Z}$?
(d) Again under the assumption that p is prime show that there is no order relation on the field $\mathbb{Z} / p \mathbb{Z}$ turning it into an ordered field.

Problem 2: Let $\left(\mathbb{Q}^{\mathbb{N}}\right)_{\mathrm{C}}$ denote the set of all Cauchy sequences in \mathbb{Q} that is the set of all sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$, where $x_{n} \in \mathbb{Q}$ for $n \in \mathbb{N}$, such that for each $\varepsilon>0$ there exists an $N \in \mathbb{N}$ such that

$$
\left|x_{n}-x_{m}\right|<\varepsilon \text { for all } n, m \geq N .
$$

Show that componentwise addition and multiplication turn $\left(\mathbb{Q}^{\mathbb{N}}\right)_{\mathrm{C}}$ into a commutative ring.

Problem 3: Define two elements $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}} \in\left(\mathbb{Q}^{\mathbb{N}}\right)_{\mathrm{C}}$ as equivalent, in signs $\left(x_{n}\right)_{n \in \mathbb{N}} \sim\left(y_{n}\right)_{n \in \mathbb{N}}$ if for all $\varepsilon>0$ there is an $N \in \mathbb{N}$ such that

$$
\left|x_{n}-y_{n}\right|<\varepsilon \quad \text { for all } n \geq N
$$

(a) Show that \sim is an equivalence relation. Denote the equivalence class of an element $\left(x_{n}\right)_{n \in \mathbb{N}} \in\left(\mathbb{Q}^{\mathbb{N}}\right)_{\mathrm{C}}$ by $\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right]$.
(b) Define an equivalence class $\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right]$ as positive, if there exists a rational $c>0$ and an $N \in \mathbb{N}$ such that $x_{n} \geq c$ for all $n \geq N$. Prove that for an equivalence class $\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right]$ exactly one of the following holds true:
(i) $\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right]$ is positive.
(ii) $\left[\left(-x_{n}\right)_{n \in \mathbb{N}}\right]$ is positive.
(iii) $\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right]=0$, where 0 is the zero sequence.
(c) Define addition and multiplication on the quotient space $\mathbb{R}:=\left(\mathbb{Q}^{\mathbb{N}}\right)_{\mathrm{C}} / \sim$ by the following:

$$
\begin{align*}
& +: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R},\left(\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right],\left[\left(y_{n}\right)_{n \in \mathbb{N}}\right]\right) \mapsto\left[\left(x_{n}\right)_{n \in \mathbb{N}}+\left(y_{n}\right)_{n \in \mathbb{N}}\right] \\
& \quad:: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R},\left(\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right],\left[\left(y_{n}\right)_{n \in \mathbb{N}}\right]\right) \mapsto\left[\left(x_{n}\right)_{n \in \mathbb{N}} \cdot\left(y_{n}\right)_{n \in \mathbb{N}}\right] \tag{5P}
\end{align*}
$$

Show that these operations are well-defined and turn \mathbb{R} into a field.
(d) Define an order relation on the quotient space $\mathbb{R}:=\left(\mathbb{Q}^{\mathbb{N}}\right)_{\mathrm{C}} / \sim$ by

$$
\begin{equation*}
\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right] \leq\left[\left(y_{n}\right)_{n \in \mathbb{N}}\right] \quad \text { iff }\left[\left(y_{n}\right)_{n \in \mathbb{N}}\right]-\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right] \text { is positive or } 0 \tag{2P}
\end{equation*}
$$

Show that that is a total order on \mathbb{R} indeed.
(e) Prove that \mathbb{R} is a Dedekind complete ordered field. It is called the field of real numbers.

