Math 2002 Number Systems
 Homework Set 6

Fall 2022

Course Instructor: Dr. Markus Pflaum
Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.
For the following problems recall that the set \mathbb{Q} of rational numbers is defined as the quotient set $\mathbb{Q}=\left(\mathbb{Z} \times \mathbb{Z}^{*}\right) / \sim$, where \sim is the equivalence relation on $\mathbb{Z} \times \mathbb{Z}^{*}$ defined as follows:

$$
(p, q) \sim(\tilde{p}, \tilde{q}) \Longleftrightarrow p \cdot \tilde{q}=\tilde{p} \cdot q \quad \text { where } p, \tilde{p} \in \mathbb{Z}, q, \tilde{q} \in \mathbb{Z}^{*}
$$

Recall further that $\frac{p}{q}$ denotes the equivalence class of the pair (p, q). Addition on \mathbb{Q} is then defined by

$$
+: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q},\left(\frac{p}{q}, \frac{k}{l}\right) \mapsto \frac{p l+k q}{q l},
$$

and multiplication by

$$
:: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q},\left(\frac{p}{q}, \frac{k}{l}\right) \mapsto \frac{p \cdot k}{q \cdot l} .
$$

The set \mathbb{Z} of integers is embedded into \mathbb{Q} via the $\operatorname{map} \mathbb{Z} \hookrightarrow \mathbb{Q}, p \mapsto \frac{p}{1}$.
Problem 1: Show that both addition and multiplication on \mathbb{Q} are well-defined.
Problem 2: Verify the following properties of addition and multiplication in \mathbb{Q} :
(a) associativity of addition,
(b) commutativity of addition,
(c) additive neutrality of $0=\frac{0}{1}$,
(d) existence of additive inverses,
(e) associativity of multiplication,
(f) commutativity of multiplication,
(g) multiplicative neutrality of $1=\frac{1}{1}$,
(h) existence of multiplicative inverses for $\frac{p}{q} \neq 0$,
(i) distributivity of multiplication over addition.

Problem 3: Define an order relation on \mathbb{Q} as follows:

$$
\frac{k}{l} \leq \frac{p}{q} \Longleftrightarrow(p l-k q) \cdot q l \geq 0
$$

Verify that \leq is welldefined, an order relation on \mathbb{Q} indeed and that it satisfies the following monotony laws, where r, s are always rational numbers.

Monotony of addition

If $r \leq s$ and $a \in \mathbb{Q}$, then $r+a \leq s+a$.

Monotony of multiplication

If $r \leq s$ and $a \in \mathbb{Q}$ with $a \geq 0$, then $r \cdot a \leq s \cdot a$.

