Math 2002 Number Systems
 Homework Set 5

Fall 2022

Course Instructor: Dr. Markus Pflaum
Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.
For the following problems recall that the set \mathbb{Z} of integers is defined as the quotient set $\mathbb{Z}=$ $(\mathbb{N} \times \mathbb{N}) / \sim$, where \sim is the equivalence relation on $\mathbb{N} \times \mathbb{N}$ defined as follows:

$$
(n, m) \sim(\tilde{n}, \tilde{m}) \Longleftrightarrow n+\tilde{m}=\tilde{n}+m \quad \text { where } n, \tilde{n}, m, \tilde{m} \in \mathbb{N} .
$$

Recall further that $[n, m]$ denotes the equivalence class of the pair (n, m). Addition on \mathbb{Z} is then defined by

$$
+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z},([n, m],[k, l]) \mapsto[n+k, m+l]
$$

and multiplication by

$$
\cdot: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z},([n, m],[k, l]) \mapsto[n \cdot k+m \cdot l, m \cdot k+n \cdot l] .
$$

Problem 1: Verify the following properties of addition and multiplication in \mathbb{Z} :
(a) associativity of addition,
(b) commutativity of addition,
(c) additive neutrality of $0=[0,0]$,
(d) existence of additive inverses,
(e) associativity of multiplication,
(f) commutativity of multiplication,
(g) multiplicative neutrality of $1=[1,0]$,
(h) distributivity of multiplication over addition.

Problem 2: Define an order relation on \mathbb{Z} as follows:

$$
p \leq q \Longleftrightarrow \exists n \in \mathbb{N}: p+n=q
$$

Verify that \leq is an order relation on \mathbb{Z} indeed and that it satisfies the following monotony laws, where p, q are always integers:

Monotony of addition

If $p \leq q$ and $r \in \mathbb{Z}$, then $p+r \leq q+r$.
Monotony of multiplication
If $p \leq q$ and $r \in \mathbb{N}$, then $p \cdot n \leq q \cdot n$.

Problem 3:

(a) Which elements in \mathbb{Z} do have a multiplicative inverse?
(b) Verify that 0 annihilates \mathbb{Z} that is that $0 \cdot p=p \cdot 0=0$ for all $p \in \mathbb{Z}$.
(c) Show that $(-p) \cdot(-q)=p \cdot q$, where $p, q \in \mathbb{Z}$ and $-p$ and $-q$ denote the additive inverses of p and q, respectively.

