Math 2002 Number Systems Homework Set 5

Fall 2022

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu. For the following problems recall that the set \mathbb{Z} of integers is defined as the quotient set $\mathbb{Z} = (\mathbb{N} \times \mathbb{N}) / \sim$, where \sim is the equivalence relation on $\mathbb{N} \times \mathbb{N}$ defined as follows:

$$(n,m) \sim (\tilde{n},\tilde{m}) \iff n+\tilde{m} = \tilde{n}+m \text{ where } n,\tilde{n},m,\tilde{m}\in\mathbb{N}$$
.

Recall further that [n, m] denotes the equivalence class of the pair (n, m). Addition on \mathbb{Z} is then defined by

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, ([n,m],[k,l]) \mapsto [n+k,m+l],$$

and multiplication by

$$: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, ([n,m],[k,l]) \mapsto [n \cdot k + m \cdot l, m \cdot k + n \cdot l].$$

Problem 1: Verify the following properties of addition and multiplication in \mathbb{Z} :

(a)	associativity of addition,	(2P)
(b)	commutativity of addition,	(1P)
(c)	additive neutrality of $0 = [0, 0]$,	(1P)
(d)	existence of additive inverses,	(1P)
(e)	associativity of multiplication,	(3P)
(f)	commutativity of multiplication,	(1P)
(g)	multiplicative neutrality of $1 = [1, 0]$,	(1P)

(h) distributivity of multiplication over addition. (3P)

Problem 2: Define an order relation on \mathbb{Z} as follows:

$$p \leq q \iff \exists n \in \mathbb{N} : p + n = q$$
.

Verify that \leq is an order relation on \mathbb{Z} indeed and that it satisfies the following monotony laws, where p, q are always integers:

Monotony of addition

If $p \leq q$ and $r \in \mathbb{Z}$, then $p + r \leq q + r$.

Monotony of multiplication

If $p \leq q$ and $r \in \mathbb{N}$, then $p \cdot n \leq q \cdot n$.

(6P)

Problem 3:

- (a) Which elements in \mathbb{Z} do have a multiplicative inverse?
- (b) Verify that 0 annihilates \mathbb{Z} that is that $0 \cdot p = p \cdot 0 = 0$ for all $p \in \mathbb{Z}$.
- (c) Show that $(-p) \cdot (-q) = p \cdot q$, where $p, q \in \mathbb{Z}$ and -p and -q denote the additive inverses of p and q, respectively.

(9P)