Math 2002 Number Systems
 Homework Set 4

Fall 2022

Course Instructor: Dr. Markus Pflaum
Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.
Problem 1: Let $f: X \rightarrow Y$ be a function for which there exist functions $g_{1}: Y \rightarrow X$ and $g_{2}: Y \rightarrow X$ such that $g_{1} \circ f=\operatorname{id}_{X}$ and $f \circ g_{2}=\operatorname{id}_{Y}$. Show that then f is invertible and that $g_{1}=g_{2}$.

Problem 3:

a) Let $f: X \rightarrow Y$ be a mapping, and $A, B \subset Y$. Show that then

$$
\begin{aligned}
& f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B) \\
& f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)
\end{aligned}
$$

b) Determine, whether the following equalities are true for subsets $C, D \subset X$:

$$
\begin{align*}
& f(C \cap D)=f(C) \cap f(D) \\
& f(C \cup D)=f(C) \cup f(D) \tag{4P}
\end{align*}
$$

Problem 4: Show that for all $x, y \in \mathbb{R}$

$$
\begin{equation*}
\max \{x, y\}=\frac{1}{2}(x+y+|x-y|) \quad \text { and } \quad \min \{x, y\}=\frac{1}{2}(x+y-|x-y|) \tag{4P}
\end{equation*}
$$

Problem 5: Consider the triple $F=(\mathbb{R}, \mathbb{R}, \Gamma)$ with
a) $\Gamma=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^{2}+y^{2}=1\right\}$,
b) $\Gamma=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x=y^{2}+1\right\}$,
c) $\Gamma=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=x^{2}+1\right\}$.
d) $\Gamma=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \sin y=\cos x\}$.

In which of these cases is F a function? Explain!

Problem 6:

a) Let $n \in \mathbb{N}_{>0}$. Find and prove by induction a formula for $\sum_{k=1}^{n} \frac{1}{k(k+1}$.
b) Prove by induction the following formula for positive natural n :

$$
\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)=\frac{n+1}{2 n}
$$

