Math 2002 Number Systems Homework Set 3

Fall 2022

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.

Problem 1: Prove the following statements for all positive natural numbers:

a)
$$1+3+5+\cdots+(2n-1)=n^2$$
,

b)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

(6P)

Let $f: X \to Y$ and $g: Y \to Z$ be functions. Prove the following claims:

- a) If f and g are injective, then $g \circ f$ is injective as well.
- b) If f and g are surjective, then $g \circ f$ is surjective, too.

(4P)

Problem 3: Let M be a set and consider its power set $\mathcal{P}M$ with the order relation given by inclusion of sets. Show that $\mathcal{P}M$ has a greatest and a smallest element. Are the greatest and smallest elements uniquely determined? (2P)

Problem 4: Let $p \in \mathbb{N}_{>0}$ denote a positive natural number. Call two integers $m, n \in \mathbb{Z}$ congruent modulo p, if p divides m-n that is if there exists $k \in \mathbb{Z}$ such that m-n=kp. If m is congruent n modulo p one denotes this by $m \equiv n \mod p$. Show that congruence module p is an equivalence relation on the set of integers \mathbb{Z} . Prove also that if

$$m \equiv n \mod p$$
 and $m' \equiv n' \mod p$,

then

$$m+m'\equiv n+n' \mod p \quad \text{and} \quad m\cdot m'\equiv n\cdot n' \mod p$$
 .

(4P)

Problem 5: Let M_1, M_2, N be sets. Show that

(a)
$$(M_1 \cap M_2) \times N = (M_1 \times N) \cap (M_2 \times N)$$
 and

(b)
$$(M_1 \setminus M_2) \times N = (M_1 \times N) \setminus (M_2 \times N)$$
.

(4P)