Clonoids and Nilpotent Algebras

Patrick Wynne Joint work with Peter Mayr

University of Colorado Boulder PALS 2023, Boulder, CO

October 24, 2023

Function Class Composition

A, B, C nonempty sets

 $f: B^n \to C, g_1, \ldots, g_n: A^m \to B.$

The composition $f(g_1,\ldots,g_n): A^m \to C$ is given by

$$f(g_1,\ldots,g_n)(\mathbf{x})=f(g_1(\mathbf{x}),\ldots,g_n(\mathbf{x})).$$

For $F \subseteq \bigcup_{n \in \mathbb{N}} C^{B^n}$ and $K \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$, we define the composition FK by

$$FK = \{f(g_1, \ldots, g_n) : n, m \in \mathbb{N}, f \in F^{(n)}, g_1, \ldots, g_n \in K^{(m)}\}.$$

For $D \subseteq \bigcup_{n \in \mathbb{N}} A^{A^n}$, we say D is a clone on A if $J_A \subseteq D$ and $DD \subseteq D$.

Algebras and Clones

A algebra, g_1, g_2, \ldots basic operations, $g_i : A^{n_i} \rightarrow A$. Form *term functions* via composition of basic operations:

$$h: A^k \to A$$

$$h(x_1,\ldots,x_k)=f(g_1(x_1,\ldots,x_k),\ldots,g_n(x_1,\ldots,x_k))$$

 $Clo(\mathbb{A})$ is the *clone* of term functions of the algebra \mathbb{A} .

Example: $\mathbb{A} = (\mathbb{F}^n, +, -, 0, \mathbb{F})$

 $\mathsf{Clo}(\mathbb{A}) = \{\alpha_1 x_1 + \ldots + \alpha_k x_k : k \in \mathbb{N}, \alpha_1, \ldots, \alpha_k \in \mathbb{F}\}.$

Example: $\mathbb{B} = (\mathbb{Z}, +, -, 0, \cdot, 1)$

$$Clo(\mathbb{B}) = \mathbb{Z}[x_1, x_2, \ldots]$$

Clonoids

Clonoid

For $C \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$ we say that C is a **clonoid** from algebra A to algebra \mathbb{B} if

$$CClo(\mathbb{A}) \subseteq C$$
 & $Clo(\mathbb{B})C \subseteq C$

• C is closed under precomposition with term functions of \mathbb{A} , and

• *C* is closed under postcomposition with term functions of \mathbb{B} ;

Example: $\mathbb{A} = (\mathbb{Z}_3, +, -, 0), \mathbb{B} = (\{0, 1\}, \wedge, \vee), C$ clonoid from \mathbb{A} to \mathbb{B} . If $f : A^2 \to B$ is in C then

$$f(x_1 + x_2, 0) \in C$$
 and $f(2x_1, 2x_2 + x_3) \in C$,

and so
$$g(x_1, x_2, x_3) = f(x_1 + x_2, 0) \wedge f(2x_1, 2x_2 + x_3) \in \mathcal{C}.$$

Notation: $\langle f \rangle$ is the clonoid from \mathbb{A} to \mathbb{B} generated by $f : A^k \to B$.

Patrick Wynne (CU Boulder)

Clonoids & Nilpotent Algebras

Polymorphisms and Clonoids

Clones are determined by relations via the Pol - Inv Galois connection. Clonoids are determined by pairs of relations.

Definition

For $R \subseteq A^n, S \subseteq B^n$, let

$$\mathsf{Pol}(R,S) = \bigcup_{k \in \mathbb{N}} \{f \colon A^k \to B \mid f(R,\ldots,R) \subseteq S\}$$

denote the set of **polymorphisms** of the relational pair (R, S).

Theorem (Couceiro, Foldes 2009)

Let A and B be algebras with |A| finite. Let $C \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$. The following are equivalent.

- C is a clonoid from \mathbb{A} to \mathbb{B} .
- ② $C = \bigcap_{i \in I} Pol(R_i, S_i)$ where $R_i \leq \mathbb{A}^{m_i}, S_i \leq \mathbb{B}^{m_i}$ are subalgebras.

Example:

- $\mathbb{A} = (\mathbb{Z}_9, +)$ $\mathbb{B} = (\mathbb{Z}_2, +)$
- Pol(3ℤ₉,0) is the clonoid of functions from A to B that are constant zero on 3ℤ₉.

Example:

- $\mathbb{A} = (\mathbb{Z}_9, +)$ $\mathbb{B} = (\mathbb{Z}_2, +)$
- Pol(≡₃,=) is the clonoid of functions from Z₉ to Z₂ that are constant on blocks modulo 3.

Clonoids from \mathbb{A} to \mathbb{B} form a lattice, $\mathcal{L}(\mathbb{A}, \mathbb{B})$, with

$$C \wedge D = C \cap D$$
 and $C \vee D = \langle C \cup D \rangle$.

An upper bound on the number of clonoids

In some cases, we need just one relational pair to determine a clonoid.

Theorem (Aichinger, Mayr 2018)

If \mathbb{A} is a finite algebra and \mathbb{B} is a finite Mal'cev algebra then clonoids from \mathbb{A} to \mathbb{B} are finitely related (i.e. determined by a single relational pair).

Since modules are Mal'cev algebras (with Mal'cev term x - y + z),

Upper Bound

If $\mathbb A$ and $\mathbb B$ are finite modules then the lattice of clonoids from $\mathbb A$ to $\mathbb B$ is countable.

Theorem (Mayr, W. 2023)

Let \mathbb{A} and \mathbb{B} be finite modules whose orders are not coprime. Then the lattice of clonoids from \mathbb{A} to \mathbb{B} is countably infinite, and not all clonoids are finitely generated.

Proof idea:

- Let p be a prime and $\mathbb{A} = (\mathbb{Z}_p, ; +) = \mathbb{B}$.
- For $n \in \mathbb{N}$ let $f_n(x_1, \ldots, x_n) = x_1 \cdot x_2 \cdot \ldots \cdot x_n$.
- Then $\langle f_1 \rangle \subsetneq \langle f_1, f_2 \rangle \subsetneq \langle f_1, f_2, f_3 \rangle \subsetneq \cdots$.
- f_n is zero-absorbing. If some $x_i = 0$ then $f_n(x_1, \ldots, x_n) = 0$.
- But the only zero-absorbing functions in $\langle f_1, \ldots, f_n \rangle$ of arity greater than *n* are the constant zero functions.

Upper bound not attained

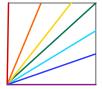
Theorem (Fioravanti, 2020)

Let p be a prime, $\mathbb{A} = (\mathbb{Z}_p, +)$ and let \mathbb{B} be a finite abelian group with order coprime to p. Then every clonoid from \mathbb{A} to \mathbb{B} is generated by its unary functions.

Proof idea:

f: Z^k_p → Z_q can be interpolated on lines in Z^k_p passing through 0.
For v ∈ Z^k_p, unary functions generated by f generate f_v: Z^k_p → Z_q,

$$f_v(x) = egin{cases} f(x) & ext{if } x \in ext{span}(v) \ 0 & ext{otherwise} \ . \end{cases}$$



• $f = \sum f_v$ for v's generating distinct lines.

Patrick Wynne (CU Boulder)

Clonoids & Nilpotent Algebras

Modules of Coprime Order

Question

Given A and B finite modules of coprime order, is the lattice of clonoids from A to B finite?

A partial answer...

A module is distributive if its submodule lattice is a distributive lattice.

Theorem (Mayr, W. 2023)

Let \mathbb{A} be a finite distributive **R**-module, and let \mathbb{B} be a finite **S** module such that |A| and |B| are coprime. Let *n* be the nilpotence degree of the Jacobson radical of **R**.

- Every clonoid from \mathbb{A} to \mathbb{B} is generated by its subset of *n*-ary functions.
- $\mathcal{L}(\mathbb{A},\mathbb{B})$ is finite.

Example

$$\mathbb{A} = (\mathbb{Z}_2, +), \ \mathbb{B} = (\mathbb{Z}_3, +), \quad f: (\mathbb{Z}_2)^2 \to \mathbb{Z}_3$$

- f is generated by its unary minors.
- Unary minors of f include f(x, x), f(0, x), f(x, 0), and f(0, 0).

$$\begin{aligned} f(x_1, x_2) =& f(0, 0) \\ &+ 2^{-1} [f(x_1, 0) + f(x_1 + x_2, 0) - f(0, 0) - f(x_2, 0) \\ &+ f(0, x_2) + f(0, x_1 + x_2) - f(0, 0) - f(0, x_1) \\ &+ f(x_1, x_1) + f(x_2, x_2) - f(0, 0) - f(x_1 + x_2, x_1 + x_2)]. \end{aligned}$$

Note that this formula holds independently of the choice of f.

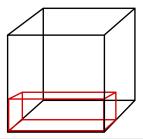
Theorem (Mayr, W. 2023)

Let $\mathbb{A} = (\mathbb{Z}_{p^n}, +)$ for a prime p and $n \ge 1$. Let \mathbb{B} be a finite abelian group with order coprime to p. Then every clonoid from \mathbb{A} to \mathbb{B} is generated by its subset of *n*-ary functions.

Proof idea: For $f : A^k \to B$, we show f is generated by its *n*-ary *minors*.

- Reduce to the case that $f(p\mathbb{A}, p\mathbb{A}, \dots, p\mathbb{A}) = 0$.
- *n*-ary minors of *f* generate $f' : A^k \to B$,

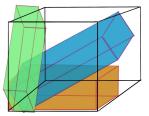
$$f'(x) = egin{cases} f(x) & ext{if } x \in A imes (pA)^{k-1}, \ 0 & ext{else.} \end{cases}$$



- Let $N \leq \mathbb{A}^k$ such that $(pA)^k \leq N$ and $N/pA^k \cong \mathbb{A}/pA$.
- Interpolate f on N.
- *n*-ary minors of f generate $f_N : A^k \to B$,

$$f_N(x) = \begin{cases} f(x) & \text{if } x \in N, \\ 0 & \text{else.} \end{cases}$$

• Cover A^k by subgroups of this form.



• Then
$$f = \sum_{N} f_{N}$$
.

Uniform Generation

For ring **R** and $r \in R^{k \times k}$, we define the inner rank of r as the least ℓ such that the right **R**-submodule of R^k that is generated by the columns of r is contained in an ℓ -generated module.

Lemma (Mayr, W. 2023)

Let \mathbb{A} be a finite distributive **R**-module, and let \mathbb{B} be a finite **S**-module such that |A| and |B| are coprime. Let *n* be the nilpotence degree of the Jacobson radical of **R**.

For all $k \in \mathbb{N}$ there exists $s : \{r \in R^{k \times k} : \operatorname{rank}(r) \le n\} \to S$ such that for all $f : A^k \to B$ and all $x \in A^k$

$$f(x) = \sum_{r \in R^{k \times k}, \operatorname{rank}(r) \le n} s(r) f(rx).$$

For $k \in \mathbb{N}$, the set $\{f : A^k \to B\}$ is uniformly generated by *n*-ary minors.

From Modules to Abelian Mal'cev Algebras

A algebra with Mal'cev term
$$m(x, y, z)$$
.
A is abelian if $[1_A, 1_A] = 0_A$.

Theorem (Herrmann, 1979)

An algebra \mathbb{A} in a congruence modular variety is abelian if and only if \mathbb{A} is polynomially equivalent to a module over a ring.

• Ring:
$$\mathbf{R}_{\mathbb{A}} := \{ r \in \operatorname{Clo}(\mathbb{A})^{(2)} : r(z, z) = z \ \forall z \in A \}.$$

$$r(x,z) + s(x,z) := m(r(x,z), z, s(x,z)), - r(x,z) := m(z, r(x,z), z) r(x,z) \cdot s(x,z) := r(s(x,z), z)$$

Neutral elements z, x for + and \cdot respectively.

- Addition: $a + b := m(a, 0, b), \quad -a := m(0, a, 0)$ for fixed $0 \in A$
- Scalar Multiplication: ra := r(a, 0)

We extend our main theorem from modules to Abelian Mal'cev algebras.

Theorem (Mayr, W. 2023)

Let \mathbb{A} be polynomially equivalent to a finite distributive $\mathbb{R}_{\mathbb{A}}$ -module and \mathbb{B} polynomially equivalent to a finite $\mathbb{R}_{\mathbb{B}}$ -module such that |A| and |B| are coprime. Let *n* be the nilpotence degree of the Jacobson radical of $\mathbb{R}_{\mathbb{A}}$.

- Every clonoid from \mathbb{A} to \mathbb{B} is generated by its (n+1)-ary functions.
- $\mathcal{L}(\mathbb{A},\mathbb{B})$ is finite.

Change from n to n + 1 due to extra variable in place of constant.

Like in the module case, functions from $\mathbb A$ to $\mathbb B$ are uniformly generated.

Lemma (Mayr, W. 2023)

For all $k \in \mathbb{N}$ there exists $s \colon \{r \in R^{k \times k}_{\mathbb{A}} : \operatorname{rank}(r) \leq n\} \to R_{\mathbb{B}}$ such that for all $f, b \colon A^{k+1} \to B$ and all $x \in A^k, z \in A$

$$f(x,z) = \sum_{r \in R^{k \times k}_{\mathbb{A}}, \operatorname{rank}(r) \le n} s(r) *_{b(x,z)} f(r *_{z} x, z)$$

where the sum is taken pointwise with respect to $+_{b(x,z)}$ in \mathbb{B} .

Central Extensions

Denote the center of an algebra \mathbb{A} in a congruence modular variety by $\zeta_{\mathbb{A}}$. $\zeta_{\mathbb{A}}$ is the largest congruence α on \mathbb{A} such that $[\alpha, 1_{\mathbb{A}}] = 0_{\mathbb{A}}$.

Theorem (Freese & McKenzie, 1987)

For an algebra \mathbb{A} in a congruence modular variety \mathcal{V} , let $\mathbb{U} = \mathbb{A}/\zeta_{\mathbb{A}}$. There exists an abelian algebra $\mathbb{L} \in \mathcal{V}$ such that $\mathbb{A} \cong \mathbb{L} \otimes \mathbb{U}$.

 $\mathbb{L}\otimes\mathbb{U}$ is an algebra with universe $L\times U$ and basic operations

$$\begin{aligned} f^{\mathbb{L}\otimes\mathbb{U}}((\ell_1,u_1),\ldots,(\ell_k,u_k)) \\ &= (f^{\mathbb{L}}(\ell_1,\ldots,\ell_k) + \hat{f}(u_1,\ldots,u_k),f^{\mathbb{U}}(u_1,\ldots,u_k)) \end{aligned}$$

where $\hat{f} : U^k \to L$. We call $\mathbb{L} \otimes \mathbb{U}$ a central extension of \mathbb{L} by \mathbb{U} . For central extension $\mathbb{L} \otimes \mathbb{U}$, every *k*-ary term is of the form

$$t^{\mathbb{L}\otimes\mathbb{U}}(\ell, u) = (t^{\mathbb{L}}(\ell) + \hat{t}(u), t^{\mathbb{U}}(u)),$$

for some $\hat{t} \colon L^k \to U$.

Example: $\mathbb{L} \times \mathbb{U}$ is a central extension of \mathbb{L} by \mathbb{U} with $\hat{t} = 0$ for all terms t. We compare arbitrary central extensions to the direct product.

Lemma (Mayr, W. 2023)

For $\mathbb{L}\otimes\mathbb{U}$ in a congruence modular variety, with $0\in L$ such that $\{0\}\leq\mathbb{L}$,

$$\xi \colon \mathsf{Clo}(\mathbb{L} \otimes \mathbb{U}) o \mathsf{Clo}(\mathbb{L} imes \mathbb{U}), \ f^{\mathbb{L} \otimes \mathbb{U}} \mapsto f^{\mathbb{L} imes \mathbb{U}}.$$

is a surjective clone homomorphism. Moreover, ξ is injective if and only if $\mathbb{L} \otimes \mathbb{U} \cong \mathbb{L} \times \mathbb{U}$.

Difference Clonoid

We define the *difference clonoid* of a central extension to capture the situation where ξ is not injective.

Difference Clonoid

$$D(\mathbb{L} \otimes \mathbb{U}) := \{ e \colon U^k \to L \ : \ (x_1^{\mathbb{L}} + e(u_1, \dots, u_k), \, x_1^{\mathbb{U}}) \in \mathsf{Clo}_k(\mathbb{L} \otimes \mathbb{U}), k \in \mathbb{N} \}.$$

Here, $(f + e)(\ell, u) = (f^{\mathbb{L}}(\ell) + \hat{f}(u) + e(u), f^{\mathbb{U}}(u)).$

Theorem (Mayr, W. 2023)

Let \mathcal{V} be a CM variety with difference term d and $\mathbb{L} \otimes \mathbb{U} \in \mathcal{V}$.

- Let $G \subseteq \operatorname{Clo}(\mathbb{L} \otimes \mathbb{U})$ such that $\xi(G)$ generates $\operatorname{Clo}(\mathbb{L} \times \mathbb{U})$.
- Let *E* be a generating set of the clonoid $D(\mathbb{L} \otimes \mathbb{U})$.

Then

$$Clo(\mathbb{L}\otimes\mathbb{U})=\langle \{d^{\mathbb{L}\otimes\mathbb{U}}\}\cup G\cup x_1+E
angle.$$

 $\mathbb{L} \in \mathcal{V}$ abelian implies \mathbb{L} is term equivalent to an algebra with basic operations of arity at most 3, i.e. $Clo(\mathbb{L})$ is generated by ternary functions.

If $\mathbb{U} \in \mathcal{V}$ is also abelian, $Clo(\mathbb{L} \times \mathbb{U})$ is generated by ternary functions. We investigate this case next.

Number of Nilpotent Mal'cev Algebras

For $\mathbb{A} \in \mathcal{V}$ a congruence modular variety, \mathbb{A} is 2-nilpotent if

 $[1_{\mathbb{A}}, [1_{\mathbb{A}}, 1_{\mathbb{A}}]] = 0_{\mathbb{A}}$

Theorem (Freese & McKenzie, 1987)

An algebra \mathbb{A} in a congruence modular variety is 2-nilpotent if and only if $\mathbb{A} \cong \mathbb{L} \otimes \mathbb{U}$ for abelian algebras \mathbb{L} and \mathbb{U} .

Theorem (Mayr, W. 2023)

Let $\mathbb{L}\otimes \mathbb{U}$ be a finite 2-nilpotent algebra in a congruence modular variety.

- If $D(\mathbb{L} \otimes \mathbb{U})$ is finitely generated then $Clo(\mathbb{L} \otimes \mathbb{U})$ is finitely generated.
- If |L| and |U| are coprime and U is polynomially equivalent to a distributive module over a ring whose Jacobson radical has nilpotence degree n then Clo(L ⊗ U) is generated by its functions of arity max(3, n + 1).

Theorem (Mayr, W. 2023)

Let $\mathbb{L}\otimes \mathbb{U}$ be a finite 2-nilpotent algebra in a congruence modular variety.

- If $D(\mathbb{L} \otimes \mathbb{U})$ is finitely generated then $Clo(\mathbb{L} \otimes \mathbb{U})$ is finitely generated.
- If |L| and |U| are coprime and U is polynomially equivalent to a distributive module over a ring whose Jacobson radical has nilpotence degree n then Clo(L ⊗ U) is generated by its functions of arity max(3, n + 1).

Proof:

- $\mathbb{L}\otimes \mathbb{U}$ is 2-nilpotent, so \mathbb{L} and \mathbb{U} are abelian.
- Hence $\mathsf{Clo}(\mathbb{L} \times \mathbb{U})$ is generated by its ternary functions.
- If $D(\mathbb{L} \otimes \mathbb{U})$ is finitely generated then $Clo(\mathbb{L} \otimes \mathbb{U})$ is finitely generated.
- For U distributive and |L|, |U| coprime, every clonoid from U to L is generated by its (n + 1)-ary functions.

Corollary

Let $m \in \mathbb{N}$ squarefree. The number of 2-nilpotent Mal'cev algebras of order m (up to term equivalence) is finite.

Proof: Let $\mathbb{L} \otimes \mathbb{U}$ be a 2-nilpotent Mal'cev algebra.

- Since *m* is squarefree, |L| and |U| are coprime.
- \mathbb{U} is abelian and squarefree, so $Con(\mathbb{U})$ is distributive.
- So ${\mathbb U}$ is polynomially equivalent to a distributive module.
- $\mathsf{Clo}(\mathbb{L} \otimes \mathbb{U})$ is generated by its functions of arity $\max(3, n+1)$.

Corollary

Let $m \in \mathbb{N}$ non-squarefree. The number of 2-nilpotent Mal'cev algebras of order m (up to term equivalence) is infinite.

This result was already known, but can be proven with clonoids as well.

Ongoing Work and Questions

We are on our way to proving...

2-nilpotent Mal'cev algebras of squarefree order

- are finitely based,
- and have tractable Subpower Membership Problem.

Question

Is every clonoid between finite abelian Mal'cev algebras of coprime order finitely generated (i.e. can we drop the distributivity assumption)?

Question

For *m* squarefree, is the number of *k*-nilpotent Mal'cev algebras of order *m* (up to term equivalence) finite for k > 2?

This likely requires understanding of clonoids from nilpotent algebras to abelian algebras.

Patrick Wynne (CU Boulder)

Mayr & Wynne, "Clonoids between modules" Arxiv link

Thanks!