University of Colorado Department of Mathematics

2019/2020 Semester 2

Math 6320 Real Analysis 2

Assignment 4

Due Friday March 20, 2020 (email me scanned copies of your solutions)

1. Let (X, \mathcal{M}, μ) be a measure space, and suppose that $p, q, r \in (1, \infty)$ satisfy

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1.$$

If $f \in L^p(\mu)$, $g \in L^q(\mu)$, and $h \in L^r(\mu)$, prove that $f \cdot g \cdot h \in L^1(\mu)$ and that

$$||f \cdot g \cdot h||_1 \le ||f||_p \cdot ||g||_q \cdot ||h||_r.$$

- 2. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) Fix $p \in [1, \infty)$. If $f \in L^p(X, \mu) \cap L^\infty(X, \mu)$, prove that $f \in L^r(X, \mu)$ for all $r \in (p, \infty)$.
 - (b) Fix $p \in [1, \infty)$. If $f \in L^p(X, \mu) \cap L^\infty(X, \mu)$, prove that

$$||f||_{\infty} = \lim_{r \to \infty} ||f||_r.$$

3. Do the following problems in the Royden–Fitz patrick textbook: p. 386, # 54 all parts, p. 399 #5.