Workshop 4

1. Let $f(x) = \sqrt{9 - x^2}$, let $g(x) = \frac{2}{x}$ and let $h(x) = 5x^{2/3}$. (a) What is the function $(f \circ g \circ h)(x)$, and what is its domain?

$$(f \circ g \circ h)(x) = f(g(h(x)))$$

= $f(g(5x^{2/3}))$
= $f(\frac{2}{5x^{2/3}})$
= $\sqrt{9 - (\frac{2}{5x^{2/3}})^2}$
= $\sqrt{9 - (\frac{2}{5x^{2/3}})^2}$ or, simplified $\frac{\sqrt{225x^{4/3} - 4}}{5x^{2/3}}$

It's domain is
$$\left(-\infty, -\left(\frac{2}{15}\right)^{3/2}\right] \cup \left[\left(\frac{2}{15}\right)^{3/2}, \infty\right)$$
.

(b) Find (fgh)(x) and its domain.

Т

$$(fgh)(x) = \sqrt{9 - x^2} \cdot \frac{2}{x} \cdot 5x^{2/3} = \boxed{\frac{10\sqrt{9 - x^2}}{x^{1/3}}}$$

Its domain is $[-3,0) \cup (0,3]$.

(c) Find $\left(\frac{fg}{h}\right)(x)$ and its domain.

$$\left(\frac{fg}{h}\right)(x) = \frac{\sqrt{9 - x^2} \cdot \frac{2}{x}}{5x^{2/3}} = \boxed{\frac{2\sqrt{9 - x^2}}{5x^{5/3}}}$$

It's domain is $[-3,0) \cup (0,3]$

3. Graph the quadratic function $f(x) = -x^2 + 4x - 1$. Solution:

