\qquad

Workshop 4

1. Let $f(x)=\sqrt{9-x^{2}}$, let $g(x)=\frac{2}{x}$ and let $h(x)=5 x^{2 / 3}$.
(a) What is the function $(f \circ g \circ h)(x)$, and what is its domain?

$$
\begin{aligned}
(f \circ g \circ h)(x) & =f(g(h(x))) \\
& =f\left(g\left(5 x^{2 / 3}\right)\right) \\
& =f\left(\frac{2}{5 x^{2 / 3}}\right) \\
& =\sqrt{9-\left(\frac{2}{5 x^{2 / 3}}\right)^{2}} \\
& =\sqrt{9-\frac{4}{25 x^{4 / 3}}} \text { or, simplified } \frac{\sqrt{225 x^{4 / 3}-4}}{5 x^{2 / 3}}
\end{aligned}
$$

It's domain is $\left(-\infty,-\left(\frac{2}{15}\right)^{3 / 2}\right] \cup\left[\left(\frac{2}{15}\right)^{3 / 2}, \infty\right)$.
(b) Find $(f g h)(x)$ and its domain.

$$
(f g h)(x)=\sqrt{9-x^{2}} \cdot \frac{2}{x} \cdot 5 x^{2 / 3}=\frac{10 \sqrt{9-x^{2}}}{x^{1 / 3}}
$$

Its domain is $[-3,0) \cup(0,3]$.
(c) Find $\left(\frac{f g}{h}\right)(x)$ and its domain.

$$
\left(\frac{f g}{h}\right)(x)=\frac{\sqrt{9-x^{2}} \cdot \frac{2}{x}}{5 x^{2 / 3}}=\frac{2 \sqrt{9-x^{2}}}{5 x^{5 / 3}}
$$

It's domain is $[-3,0) \cup(0,3]$.
2. Graph the function $f(x)=\left\{\begin{array}{ll}x^{2}-2, & \text { if } x \leq 2 \\ \frac{1}{3} x+\frac{4}{3}, & \text { if } x>2\end{array}\right.$.

Solution:

3. Graph the quadratic function $f(x)=-x^{2}+4 x-1$.

Solution:

