\qquad

Workshop 2

1. Factor $121 h^{2}-49$.

$$
(11 h-7)(11 h+7)
$$

2. Factor $18 n^{3}-84 n^{2}+98 n$.

$$
2 n(3 n-7)^{2}
$$

3. Factor $a^{8}-2 a^{4} b^{4}+b^{8}$. [Hint: use the formulas you know, for example the square of a sum. You should get 6 factors.]

$$
\begin{array}{rlr}
a^{8}-2 a^{4} b^{4}+b^{8} & =\left(a^{4}\right)^{2}-2 a^{4} b^{4}+\left(b^{4}\right)^{2} & \\
& =\left[a^{4}-b^{4}\right]^{2} & \\
& =\left[\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}\right]^{2} & \\
& =\left[\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)\right]^{2} & \text { difference of squares a sum } \\
& =\left[(a-b)(a+b)\left(a^{2}+b^{2}\right)\right]^{2} & \\
\text { another difference of squares } \\
& =(a-b)^{2}(a+b)^{2}\left(a^{2}+b^{2}\right)^{2} & \text { distribute the square power }
\end{array}
$$

4. Recall that if a and b are real numbers, then

$$
\begin{align*}
a^{2}-b^{2} & =(a-b)(a+b) \\
a^{3}-b^{3} & =(a-b)\left(a^{2}+a b+b^{2}\right) \\
a^{4}-b^{4} & =(a-b)\left(a^{3}+a^{2} b+a b^{2}+b^{3}\right) \\
& \vdots \\
a^{n}-b^{n} & =(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right) \tag{0.1}
\end{align*}
$$

(This just follows from distributing the bigger sum on the right-hand-side through $a-b$, then distributing a and $-b$ inside $i t$, then canceling.) This also means that

$$
\begin{equation*}
\frac{a^{n}-b^{n}}{a-b}=a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1} \tag{0.2}
\end{equation*}
$$

(just divide both sides of (0.1) by $(a-b)$), which is useful in calculating sums of the form $a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}$. Use this fact (0.2) to calculate the sum

$$
5 \cdot 32+5 \cdot 16 \cdot 3+5 \cdot 8 \cdot 9+5 \cdot 4 \cdot 27+5 \cdot 2 \cdot 81+5 \cdot 243
$$

Show your work. [Hint: factor any common factor out and use (0.2).]

$$
\begin{array}{rlrl}
5 \cdot 32+5 \cdot 16 \cdot 3+5 \cdot 8 \cdot 9+5 \cdot 4 \cdot 27+5 \cdot 2 \cdot 81+5 \cdot 243 & & \\
& =5(32+16 \cdot 3+8 \cdot 9+4 \cdot 27+2 \cdot 81+243) & & \text { factor out the } 5 \\
& =5\left(2^{5}+2^{4} \cdot 3+2^{3} \cdot 3^{2}+2^{2} \cdot 3^{3}+2 \cdot 3^{4}+3^{5}\right) & & \text { rewrite as powers of } 2 \text { and } 3 \\
& =5 \cdot \frac{2^{6}-3^{6}}{2-3} & & \text { use equation }(0.2) \\
& =5 \cdot \frac{64-729}{-1} & & \text { simplify } \\
& =5 \cdot 665 & & \\
& =3325 & &
\end{array}
$$

5. How many pounds of walnuts at $\$ 0.85 / \mathrm{lb}$ should be mixed with 20 lb of pecans at $\$ 1.20 / \mathrm{lb}$ to give a mixture worth $\$ 1.04 / \mathrm{lb}$?

Let x denote the number of pounds of walnuts mixed. Then, we're mixing x pounds of walnuts with 20 pounds of pecans to get a total of $x+20$ pounds of mixture. How much are we paying? Well, we're paying $\$ 0.85 x$ for the walnuts plus $\$ 1.20 \cdot 20$ for the pecans. But this number better equal what we're paying for the mixture, $\$ 1.04 \cdot(x+20)$. Thus, our equation is

$$
0.85 x+1.20 \cdot 20=1.04(x+20)
$$

Distribute on the right side, and simplify $1.20 \cdot 20$,

$$
0.85 x+24=1.04 x+20.8
$$

then solve for x :

$$
3.2=0.19 x \quad \Longrightarrow \quad 16.84 \approx x
$$

so we're mixing approximately 16.84 lbs of walnuts.

