Workshop 1

1. Which of the following containments is true? Circle those which are correct.
$\mathbb{N} \subseteq \mathbb{W}$
$\mathbb{N} \supseteq \mathbb{W}$
$\mathbb{W} \subseteq \mathbb{Q}$
$\mathbb{Q} \supseteq \mathbb{H}$
$\mathbb{Z} \subseteq \mathbb{W}$
$\mathbb{Z} \supseteq \mathbb{Q}$
$\mathbb{Z} \subseteq \mathbb{R}$

$$
\mathbb{H} \subseteq \mathbb{R}
$$

2. State the containment relations between the reals \mathbb{R}, naturals \mathbb{N}, integers \mathbb{Z}, wholes \mathbb{W} and rationals \mathbb{Q}. They will be of the form $A \subseteq B \subseteq C \subseteq D \subseteq E$. Are they proper containments?
$\mathbb{N} \subseteq \mathbb{W} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}, \quad$ Yes, proper.
3. The commutative property states that $a+b=b+a$ and $a b=b a$ for all real numbers a and b. What is the statement of the associative property?

$$
\begin{aligned}
a+(b+c) & =(a+b)+c \\
a(b c) & =(a b) c
\end{aligned}
$$

4. What is the statement of the distributive property?

$$
a(b+c)=a b+a c
$$

5. We know that if a and b are real numbers such that $a b=0$, then at least one of a and b has to be 0 . By extension, given any real numbers $a_{1}, a_{2}, \ldots, a_{n}$, if $a_{1} a_{2} \cdots a_{n}=0$, then at least
one of them (perhaps several) must be 0 . Now, the (rather ugly looking) polynomial

$$
\begin{align*}
& p(x)=\frac{\sqrt{6}}{10} \pi+\left(\frac{2 \sqrt{6}-(-5 \sqrt{2}+\sqrt{3}+\sqrt{6}) \pi}{10}\right) x \\
&+\left(\frac{-2(-5 \sqrt{2}+\sqrt{3}+\sqrt{6})+(-5-5 \sqrt{2}+\sqrt{3}) \pi}{10}\right) x^{2} \\
&+\left(\frac{-10(1+\sqrt{2})+2 \sqrt{3}+5 \pi}{10}\right) x^{3}+x^{4} \tag{0.1}
\end{align*}
$$

can be factored as

$$
\begin{equation*}
p(x)=(x-1)(x-\sqrt{2})\left(\frac{x+\sqrt{3}}{5}\right)\left(x+\frac{\pi}{2}\right) \tag{0.2}
\end{equation*}
$$

A root of $p(x)$ is a real number a such that $p(a)=0$, that is, replacing x with a in the polynomial will make the expression equal to 0 . What are the roots of $p(x)$? (Hint: let $p(x)=0$ and apply the fact noted above to $p(x)$ in its factored form (0.2).)

Suppose a is a real root of $p(x)$. Then,

$$
\begin{aligned}
p(a) & =(a-1)(a-\sqrt{2})\left(\frac{a+\sqrt{3}}{5}\right)\left(a+\frac{\pi}{2}\right) \\
& =0
\end{aligned}
$$

This means that at least one of $a-1, a-\sqrt{2}, \frac{a+\sqrt{3}}{5}$ or $a+\frac{\pi}{2}$ must equal 0 . These are the only possibilities, and they completely account for the four roots of $p(x)$, if we can extract a from each. Solving each of these for a gives

$$
a=1 \quad a=\sqrt{2} \quad a=-\sqrt{3} \quad a=-\frac{\pi}{2}
$$

6. Circle the numbers which are rational:

$$
\begin{array}{llll}
\frac{\sqrt{2}}{2} & \frac{1}{3}+2 \pi & \frac{\sqrt{24}}{\sqrt{56}} & \frac{\pi^{0}}{237} \\
\hline
\end{array}
$$

7. Simplify the expression $\frac{27-\sqrt{72}}{6}$.

$$
\frac{9-2 \sqrt{2}}{2}
$$

8. Simplify the expression $-\left(\frac{27 p^{6}}{8 q^{3}}\right)^{\frac{2}{3}}$.

$$
-\frac{9 p^{4}}{4 q^{2}}
$$

9. Simplify the expression $(7 \sqrt{2})^{2}$.
10. Simplify the expression $(3+2 \sqrt{7})(3-2 \sqrt{7})$.
