
Midterm Review Sheet

1 The Three Defining Properties of Real Numbers

For all real numbers a, b and c, the following properties hold true.

1. The commutative property:

a+ b = b+ a

ab = ba

2. The associative property:

a+ (b+ c) = (a+ b) + c

a(bc) = (ab)c

3. The distributive property:

a(b+ c) = ab+ ac

Remark 1.1 Recall that for all real numbers a we have

−a = (−1)a (1.1)

This is important to remember in the case where you have something like (a− b) in the numerator
and (b− a) in the denominator of some rational expression:

a− b
b− a

You can’t cancel, since the top and bottom are different. However, note that by the distributive
property and equation (1.1) we have

a− b = −1(b− a) = −(b− a)

so
a− b
b− a

=
−1����(b− a)

���b− a
= −1

These properties define all other facts about real numbers, and chief among them are the formulas
we give below.

Remember that the distributive property is an equality between two expressions. Going from the
left expression to the right expression is called distributing a over the sum b+ c, while going from
the right expression to the left expression is called factoring a out, and a is called the common
factor of ab and ac.
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2 Important Formulas

Here are the factoring formulas you should know by now: for any real numbers a and b,

(a+ b)2 = a2 + 2ab+ b2 Square of a Sum

(a− b)2 = a2 − 2ab+ b2 Square of a Difference

a2 − b2 = (a− b)(a+ b) Difference of Squares

a3 − b3 = (a− b)(a2 + 2ab+ b2) Difference of Cubes

a3 + b3 = (a+ b)(a2 − 2ab+ b2) Sum of Cubes

And here are the exponential rules you should know: for any real numbers a and b, and any rational
numbers

p

q
and

r

s
,

ap/qar/s = ap/q+r/s Product Rule

= a
ps+qr

qs

ap/q

ar/s
= ap/q−r/s Quotient Rule

= a
ps−qr

qs

(ap/q)r/s = apr/qs Power of a Power Rule

(ab)p/q = ap/qbp/q Power of a Product Rule(a
b

)p/q

=
ap/q

bp/q
Power of a Quotient Rule

a0 = 1 Zero Exponent

a−p/q =
1
ap/q

Negative Exponents

1
a−p/q

= ap/q Negative Exponents

Remember, there are different notations:

q
√
a = a1/q

q
√
ap = ap/q = (a1/q)p

For example, the power of a product rule in radical notation would be

q
√

(ab)p = q
√
ap q
√
bp

Finally, the quadratic formula: if a, b and c are real numbers, then the quadratic polynomial
equation

ax2 + bx+ c = 0

has (either one or two) solutions

x =
−b±

√
b2 − 4ac

2a

The discriminant is the number under the square root, b2 − 4ac.

1. If b2 − 4ac > 0, there are two real roots, possibly (indeed quite likely) irrational.

2. If b2 − 4ac = 0, there is one real root, namely −b/2a, and it is rational if a and b are.
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3. If b2 − 4ac < 0, there are two complex roots, so no real roots.

Remark 2.1 These formulas give some methods for finding roots of polynomials. For example, the
polynomial

x2 − 5

can be factored using the difference of squares formula:

(x− 51/2)(x+ 51/2)

since 5 = 51 = 52/2 = (51/2)2. As another example, the polynomial

9x2 + 6x+ 1

can be factored using the square of a sum formula:

(3x+ 1)2

But in general, not all polynomials can be factored using those formulas. Thus, we need the sure-shot
quadratic to solve a second degree polynomial like this one:

πx2 −
√

2x+
√

5
2

The quadratic formula was derived using a technique called “completing the square”. We discuss
this now. �

3 Completing the Square

In completing the square, you start with the ”incomplete square” a2 + 2ab = c and use the sum
of squares formula to ”complete” it: in practice, you need to find b2 and add it to both sides. To do
that, divide 2ab by 2a and square the result:

a2 + 2ab = c

a2 + 2ab+
(

2ab
2a

)2

= c+
(

2ab
2a

)2

Then, we have by the square of a sum formula,(
a+

2ab
2a

)2

= c+
(

2ab
2a

)2

i.e.

(a+ b)2 = c+ b2

We already knew all we had to do was add b2 to both sides here, but the procedure outlined above
is in practice how you find what b2 even is!

Example 3.1 Solve 3x2 + 7x = 0 by completing the square.

Solution: we don’t know what b2 is here. First, we divide through by 3, so that the x2 term has a
coefficient of 1:

x2 +
7
3
x = 0
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Then we divide
7
3
x by 2x, just like we divided 2ab by 2a, square the result, and add it to both sides.

When we divide by 2x and square we get
(

7
6

)2

or
49
36

:

x2 +
7
3
x+

49
36

=
49
36

so (
x+

7
6

)2

=
49
36

Once the square is completed, we can solve for x, and that is the value of completing the square:
Take the square root,

x+
7
6

= ±7
6

Subtract
7
6

from both sides, and you’re done:

x = −7
6
± 7

6
or x = 0,−7

3

Remark 3.2 Notice we could have done this by straightforward factoring:

3x2 + 7x = 0 =⇒ x(3x+ 7) = 0

By the zero product property, either x = 0 or 3x+ 7 = 0, so x = 0,−7
3

.
Or we could have used the quadratic formula:

3x2 + 7x = 0 =⇒ x =
−7±

√
72 − 4 · 3 · 0
2 · 3

=
−7± 7

6
= 0 or − 7

3

The quadratic formula works in all cases, but factoring will not always get you to the root in any
easy way, as the next example shows. When you have radicals in your roots, it isn’t easy to guess
them ahead of time. You need a reliable method to get these, and that’s what completing the square
is really useful for. �

Example 3.3 Solve 3x2 + 7x = 2 by completing the square.

Solution: This example is just like Example 3.1, except that we have a 2 instead of a 0 on the right
hand side. The procedure is the same, however: divide everything through by 3 to get the x2 term
to have a coefficient of 1:

x2 +
7
3
x =

2
3

Then look at
7
3
x, divide it by 2x, which will give

7
6

, square the result, which gives
49
36

, and add it
to both sides:

x2 +
7
3
x+

49
36

=
2
3

+
49
36

Simplify (on the right side, find a common denominator, which is 36, and add the fractions):(
x+

7
6

)2

=
24 + 49

36
=

73
36

Take the square roots of both sides:

x+
7
6

= ±
√

73
6
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and subtract
7
6

from both sides:

x = −7
6
±
√

73
6

4 Exponents

Let’s do some examples of taking exponents.

Example 4.1 Simplify 3
√
−125.

Solution: 3
√
−125 = [(−5)3]1/3 = (−5)3/3 = −5 .

Example 4.2 Simplify x 4
√
x5.

Solution: x 4
√
x5 = x1 · x5/4 = x1 · x1 · x1/4 = x2 4

√
x .

Example 4.3 Simplify 12 3

√
81
8z9

.

Solution: 12 3

√
81
8z9

= 12
(34)1/3

(23)1/3(z9)1/3
= 12

3 3
√

3
2z3

=
18 3
√

3
z3

.

Example 4.4 Simplify
(
−1

2

)−3

.

Solution:
(
−1

2

)−3

=
(
−2

1

)3

= (−2)3(−1)3 = −8 .

5 Rational Expressions

Example 5.1 Compute and simplify
y + 2

5y2 + 11y + 2
+

5
y2 + y − 6

.

Solution: First, we need to factor the denominators, since then we’ll know what our common de-
nominator needs to be:

y + 2
5y2 + 11y + 2

+
5

y2 + y − 6
=

y + 2
(5y + 1)(y + 2)

+
5

(y + 3)(y − 2)

Well, it looks like we have no choice but to multiply all four of the different factors to get our
common denominator:

(y + 3)(y − 2)
(y + 3)(y − 2)

· y + 2
(5y + 1)(y + 2)

+
5

(y + 3)(y − 2)
· (5y + 1)(y + 2)

(5y + 1)(y + 2)

=
(y + 3)(y − 2)(y + 2) + 5(5y + 1)(y + 2)

(y + 3)(y − 2)(5y + 1)(y + 2)
=

[
(y + 3)(y − 2) + 5(5y + 1)

]
����(y + 2)

(y + 3)(y − 2)(5y + 1)����(y + 2)

=
y2 + y − 6 + 25y + 5

(y + 3)(y − 2)(5y + 1)
=

y2 + 26y − 1
(y + 3)(y − 2)(5y + 1)
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6 Inequalities

Yet another important fact about real numbers, which we exploit quite heavily, is that they are
ordered. That is, given any real numbers a and b, we always have one of the following relations
hold:

a ≤ b
b ≤ a

If a 6= b, then one of the following holds:

a < b

b > a

When we work with equalities, we can add equal things to both sides, and we can multiply both
sides of an equality by any equal expression. For example, we can add 2 to both sides of

2x− 2 = −4x+ 5

to get
2x = −4x+ 7

and we can divide both sides by 2 to get

x = −2x+
7
2

These are called the additive and multiplicative properties of equalities. The same properties
hold for inequalities. Thus, if

2x− 2 < −4x+ 5

we can add 2 to both sides to get
2x < −4x+ 7

and we can divide both sides by 2 to get

x < −2x+
7
2

The only difficulty comes when we multiply or divide by a negative number: in that case we have
to “flip” the inequality sign. For example, if

−5x < 10

then
x > −2

The reason for this can be seen from the following picture: if a < b, then −b < −a,

−b −a 0 a b
|| | | |

Example 6.1 Solve the inequality 4(3x− 5) + 18 < 2(5x+ 1) + 2x.

Solution: First, distribute the 4 and the 2 through the parantheses and simplify:

4(3x− 5) + 18 < 2(5x+ 1) + 2x ⇐⇒ 12x− 20 + 18 < 10x+ 2 + 2x
⇐⇒ 12x− 2 < 12x+ 2
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Then subtract 12x from both sides:

⇐⇒ −2 < 2

This is always true, so the inequality is true for all real x (x doesn’t contribute anything here, a
multiple of it is just added to both sides, that’s all), i.e. the solution is R, otherwise written {x | x
is real} or (−∞,∞).

Example 6.2 Solve and graph the compound inequality
3
5
x+

1
2
>

3
10

and −4x > 1.

Solution: Let’s do one at a time. First,

3
5
x+

1
2
>

3
10

⇐⇒ 6x+ 5 > 3 multiply both sides by the LCD, 10

⇐⇒ 6x > −2 subtract 5 from both sides

⇐⇒ x > −1
3

divide both sides by 3

The second inequality is solved by dividing both sides by −4:

x < −1
4

Thus, the solution set for the compound inequality is{
x | x > −1

3

}
∩
{
x | x < −1

4

}
=
{
x | − 1

3
< x < −1

4

}
Graphically, this is

− 1
3 − 1

4
0
|( )

How do we know −1
3
< −1

4
? Because by the multiplicative property

3 < 4 ⇐⇒ 1
4
<

1
3
⇐⇒ −1

3
< −1

4

In interval notation, the solution set is (
−1

3
,−1

4

)

7 Absolute Value

Recall that the absolute value of a real number a is defined as

|a| =

{
a, if a ≥ 0
−a, if a < 0

The important point to note is that there are two cases.

Example 7.1 Solve the absolute value inequality
∣∣∣∣4x+ 5

3
− 1

2

∣∣∣∣ ≤ 7
6

.
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Solution: Since there are two cases, we have two inequalities to solve (we don’t know ahead of time
whether the stuff in the absolute value brackets is positive or negative):

4x+ 5
3
− 1

2
≤ 7

6
(7.1)

and

−
(

4x+ 5
3
− 1

2

)
≤ 7

6
(7.2)

Starting with (7.1), we have
4x+ 5

3
≤ 1

2
+

7
6

=
10
6

=
5
3

so
4x+ 5 ≤ 5

whence
4x ≤ 0 or x ≤ 0

For the second inequality we have, multiplying both sides by −1,

4x+ 5
3
− 1

2
≥ −7

6
so

4x+ 5
3

≥ 1
2
− 7

6
= −4

6
= −2

3
Therefore

4x+ 5 ≥ −2

so
4x ≥ −7 or x ≥ −7

4
Putting these together we get a solution set

{
x | − 7

4
≤ x ≤ 0

}
or, in interval notation,

[
−7

4
, 0
]
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8 Points and Lines

Suppose you have two points in the plane,

P = (x1, y1), Q = (x2, y2)

What information can you get from them? Three things:

1. The distance between them, d(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2.

2. The coordinates of the midpoint between them, M =
(
x1 + x2

2
,
y1 + y2

2

)
.

3. The slope of the line through them, m =
y2 − y1
x2 − x1

=
rise
run

.

This information comes in handy when doing line problems, especially the slope part. As for lines,
remember, they can be represented in three different ways:

Standard Form ax+ by = c

Slope-Intercept Form y = mx+ b

Point-Slope Form y − y1 = m(x− x1)

where a, b, c are real numbers, m is the slope, b (different from the standard form b) is the y-intercept,
and (x1, y1) is any fixed point on the line. The first one is basically only useful for finding the x- and
y-intercepts (by letting y = 0 and x = 0, respectively). The second is useful for graphing and finding
the x- and y-intercepts (also by letting y = 0 and x = 0, respectively). The third is useful for coming
up with the equation of a line given only information about a point and a slope, or equivalently, by
(3), given information about two points.

Suppose two lines `1 and `2 have slope-intercept forms y = m1x + b1 and y = m2x + b2. Then
`1 and `2 are parallel, denoted `1‖`2, if their slopes are the same, that is if m1 = m2, and they

perpendicular, denoted `1 ⊥ `2, if their slopes are negative reciprocals, that is if m1 = − 1
m2

(or

equivalently m2 = − 1
m1

).

Example 8.1 Suppose I’m given two points

P = (22, 12), Q = (4,−15)

and asked to come up with the equation of the line passing through them and then graph it. In order
to come up with the equation, I need the slope. I can’t do anything without that. Luckily, I can get
the slope using (3):

m =
−15− 12

4− 22
=
−27
−18

=
3
2

Now I’ve got a couple of points and I’ve got a slope, so I naturally use point-slope to give a rough-
draft version of the equation (the final draft will be slope-intercept here, since that’s what I need to
graph it): picking (22, 12) for no particular reason, I get

y − 12 =
3
2

(x− 22)

Simplifying gives

y =
3
2
x− 21
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This I can graph: I go to (0,−21), because my y-intercept is −21, which means x = 0 there, and
plot a point there. Then I go up three and over two and plot a point there (i.e. at (2,−18)), then I
connect the dots, and I’m done.

x

y

14

−21
(2,−18)

P = (22, 12)

Q = (4,−15)

5
5

−5

9 Circles

We know from Euclidean geometry that a circle, sometimes denoted
⊙

, is by definition the set of
all points X := (x, y) a fixed distance r, called the radius, from another given point C = (h, k),
called the center of the circle, ⊙

def= {X | d(X,C) = r} (9.1)

Using the distance formula (1) and the square root property, d(X,C) = r ⇐⇒ d(X,C)2 = r2, we
see that this is precisely ⊙

def= {(x, y) | (x− h)2 + (y − k)2 = r2} (9.2)

which gives the familiar equation for a circle.

Example 9.1 Suppose C = (−7, 2) and r = 11. The equation of this circle is

(x+ 7)2 + (y − 2)2 = 121

and it’s graph is

x

y

(−7, 2)

r = 11

5
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10 Functions

An ordered pair (a, b) of numbers a and b (or other things, perhaps matrices or polynomials, or
whatever) is like the set {a, b} except that we’re keeping tabs on the positions of a and b. One comes
first, the other comes second.

A cartesian product A×B of two sets A and B is the set of all ordered pairs (a, b), i.e.

A×B = {(a, b) | a ∈ A, b ∈ B}

A relation on A × B is any subset of A × B. If R = A′ × B′ is a relation on A × B, then the set
A′ is called the domain, and the set B′ the range of the relation. I.e. the domain is the set of first
coordinates, and the range is the set of second coordinates of R. The set B is called the codomain
of the relation.

Example 10.1 The set of points a distance greater than 1 from (0, 0) is a relation on R×R, since
that’s a subset of the plane. An ellipse in the plane is a relation on R × R. Other examples are
equality =, strict inequality < and partial inequality ≤ on R×R. For example, if we were to graph =,
we’d get the line through the origin with slope of 1, i.e. y = x. Sometimes we have special notation
for certain relations. For example, we usually write a = b or a < b or a ≤ b instead of (a, b) ∈=
or (a, b) ∈< or (a, b) ∈≤, even though <, for example, really means a subset of the plane, i.e. set
{(a, b) | a is strictly less than b}.

The most important relation by far is the function. A function f : A → B is actually a relation
on A×B, that is, it is a collection of ordered pairs (a, b) in A×B. We employ the special function
notation f(a) = b instead of (a, b), to make sure we understand we’re dealing with a function here and
not just any relation. A function’s ordered pairs f(a) = b must satisfy a very important requirement:
the “vertical line test”, which is that if we run a vertical line across the graph of f , we can only
hit one point at a time with it. In words, the vertical line test means there are no two points (a, b)
and (a, c) in the relation f with a 6= c. Remember, an arbitrary relation f is just a bunch of ordered
pairs, so it can happen that (a, b) and (a, c) with different b and c are in f . But then we just say f
is not a function. Whatever else it is, it’s not a function. This is in fact the essence of a function.
We want functions to avoid having both f(a) = b and f(a) = c for b 6= c.

Given a real function f , i.e. a subset of R×R, and given two ordered pairs (x1, y1) and (x2, y2) of f
(i.e. f(x1) = y1 and f(x2) = y2), we define the average rate of change of f as x varies between
x1 and y1 as the quotient

average rate of change =
∆y
∆x

=
y2 − y1
x2 − x1

=
f(x2)− f(x1)

x2 − x1
(10.1)

This is a lot like the slope between two points. In fact, it is the slope between the two points, except
that in this context we pick the points to lie on the graph of f . The reason we call it average is
we’re ignoring all the variation of f between x1 and x2, and we’re just getting to the bottom line,
the net change in y between x1 and x2. This is a gross oversimplification of f , but it’s much easier
to see and compute than all of f between those x’s.

Sometimes we want to use a formula to describe the behavior of a function f . Typically, this is
an algebraic expression, but it need not always be so. And it is frequently, though not always, in
one variable. In such a case, we usually denote the variable by x, and we write f(x) to denote that
the function depends on the variable x, which is appropriately called the independent variable.
Since to each a in the domain of f we assign one, and only one, b, such that f(a) = b, we say that b
depends on a. If we have a formula for f , then we assign a variable y to x, satisfying y = f(x), and
we say y depends on x, or y is the dependent variable.

11



For example,
f(x) = x2

is the parabola. The formula here is x2 and the function’s domain and range are given by the
notation f : R → [0,∞). All this is shorthand for the relation explicitly given by the subset of the
plane

{(a, a2) | a ∈ R}

We often want to graph the function, and this just means plotting the relation in the plane A× B
(usually the x-y plane). An easy way to graph a function g is by transforming the graph of a known
function f in such a way as to get g. To do this, we need to know that the graph of a function can
be transformed in six different ways:

1. Vertical translation by k:
f(x) 7→ f(x)± k

If +, the shift is upward, if −, it’s downward.

2. Horizontal translation by h:
f(x) 7→ f(x± h)

If +, the shift is to the left, if −, it’s to the right.

3. Reflection about the x-axis:
f(x) 7→ −f(x)

4. Reflection about the y-axis:
f(x) 7→ f(−x)

5. Vertical stretch or compression:

f(x) 7→ af(x)

where a > 0.

(a) If 0 < a < 1, this is a vertical compression.
(b) If 1 < a, this is a vertical stretch.

6. Horizontal stretch or compression:

f(x) 7→ f(ax)

where a > 0.

(a) If 0 < a < 1, this is a horizontal stretch.
(b) If 1 < a, this is a horizontal compression.

Example 10.2 For example, the graph of f(x) = x2 is known:

x

y

2

2
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From this we can get the graph of g(x) = −x2 + 4x− 1. First we complete the square to get

g(x) = −(x− 2)2 + 3

This means that to get the graph of g we take the graph of f , move it right by 2, up by 3, and flip it
over:

x

y

5

�

Remark 10.3 This method is only good if you know some basic functions whose graphs you can
manipulate. The parent functions whose graphs you should know are these:

The diagonal line (aka the identity function) f(x) = x:

x

y

2

2

The absolute value function f(x) = |x|:

x

y

2

2
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The parabola f(x) = x2:

x

y

2

2

The sideways half parabola, or square root function, f(x) =
√
x

x

y

2

2

The cube function f(x) = x3:

x

y

2

2

The sideways cube function, aka the cube root function, f(x) = 3
√
x:

x

y

2

2

�

A function is even if it’s symmetric about the y-axis, in which case it must satisfy f(x) = f(−x).
The parabola f(x) = x2 is an example. A function f is odd if it is symmetric about the origin, that
is if it satisfies f(x) = −f(x). An example is the cube function f(x) = x3. It is entirely possible
that a function is neither even nor odd, for example f(x) = x2 + x3.
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A function may be increasing, decreasing, or constant. It’s increasing if

x1 < x2 =⇒ f(x1) < f(x2)

that is if f preserves the order relations of points, or, graphically, if it goes up from left to right. It
is decreasing if

x1 < x2 =⇒ f(x1) > f(x2)

that is if f reverses the order relations of points, or, graphically, if it goes down from left to right.
It is constant if it never increases or decreases. Graphically, this would be a horizontal line.

Example 10.4 The parabola f(x) = x2 is decreasing on (−∞, 0) and increasing on (0,∞). It is
neither increasing nor decreasing at x = 0, where it’s slope is 0. The cube and cube root functions x3

and 3
√
x are increasing on (−∞, 0)∪ (0,∞). The absolute value function f(x) = |x| is decreasing on

(−∞, 0) and increasing on (0,∞). A line f(x) = mx+ b with positive slope m is always increasing,
and one with negative slope m is always decreasing. �

A piecewise function is, as the name suggests, a function cobbled together from two or more
functions. For example, the function

f(x) =

x
2 − 2, if x ≤ 2

1
3
x+

4
3
, if x > 2

is cobbled together from the parabola x2 − 2 and the line
1
3
x+

4
3

:

x

y

5

The only question here is the domain of each piece. This is stated in the formulaic definition of the
function. For example, in the above example we are told the domain of the parabola is (−∞, 2] (this
is the x ≤ 2 part), while the domain of the line is (2,∞) (this is the x > 2 part).

We may add, subtract, multiply and divide functions f : A → R and g : B → R (where A and
B are subsets of R, and, respectively, the domains of f and g) to get new functions f + g, f − g,
f · g and f/g, and the way we define these new functions is pointwise, i.e. point-by-point:

(f + g)(x) = f(x) + g(x)
(f − g)(x) = f(x)− g(x)

(fg)(x) = f(x) · g(x)(
f

g

)
(x) =

f(x)
g(x)

provided g(x) 6= 0

15



Note the domains:

f + g : A ∩B → R
f − g : A ∩B → R
fg : A ∩B → R
f

g
: A ∩B − {x | g(x) = 0} → R

Example 10.5 Let f(x) =
x2 − 8x+ 12

x− 6
and let g(x) =

√
x− 5. Then f : (−∞, 6) ∪ (6,∞) → R

and g : [5,∞)→ R, and

f + g : [5, 6) ∪ (6,∞)→ R
f − g : [5, 6) ∪ (6,∞)→ R
fg : [5, 6) ∪ (6,∞)→ R
f

g
: (5, 6) ∪ (6,∞)→ R

have formulas

(f + g)(x) =
x2 − 8x+ 12

x− 6
+
√
x− 5

(f − g)(x) =
x2 − 8x+ 12

x− 6
−
√
x− 5

(fg)(x) =
(x2 − 8x+ 12)

√
x− 5

x− 6(
f

g

)
(x) =

x2 − 8x+ 12
(x− 6)

√
x− 5

�

We may compose two functions f : A → B and g : B → C to get a new function g ◦ f : A → C,
and this new function is again defined pointwise:

(g ◦ f)(x) = g(f(x))

The domain of g ◦ f is B ∩ f(A), that is the intersection of the range of f with the domain of g. We
can iterate this process to k different functions, f1 ◦ f2 ◦ · · · ◦ fk, and we frequently do.

Example 10.6 Let f(x) = x2 − 1 and g(x) =
√
x+ 3. Then, f : R→ [−1,∞) and g : [−3,∞)→

[0,∞), and

(f ◦ g)(x) = x+ 2

(g ◦ f)(x) =
√
x2 + 2

Their domains and ranges are given by

f ◦ g : [0,∞)→ [−1,∞)

g ◦ f : [−1,∞)→ [
√

2,∞)

�

Functions may be, but do not have to be, invertible. To have an inverse, a function f : A → B
must be one-to-one, that is must satisfy the “horizontal line test“ (in addition to the vertical
line test): if f(a1) = b and f(a2) = b, then a1 = a2, or in other words, unique x-values go with
unique y-values. In such a case the inverse of f is a function f−1 : B → A. An example of a
function which is not invertible is f(x) = x2. An example of one that is invertibel is f(x) = x3 (it’s
inverse is f−1(y) = 3

√
y).
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11 Polynomial Functions

11.1 Quadratic Plynomial Functions

These are second degree real polynomial functions whose general formula is

f(x) = ax2 + bx+ c (11.1)

where a, b and c are real numbers. By completing the square such a function can always be written
in the form

f(x) = a(x− h)2 + k (11.2)

where V = (h, k) is the coordinate of the vertex of the parabola, as we know from our tranformation
of the graph of the regular parabola p(x) = x2. In fact, we know more about the vertex. We can
get h and k directly from the general equation (11.1):

V = (h, k) =
(
− b

2a
, f

(
− b

2a

))
(11.3)

That is h = − b
2a and k = f(− b

2a ).

Example 11.1 The quadratic function f(x) = x2 − 4x+ 1 can be written as f(x) = (x− 2)2 − 3,
so it is a translation of the regular parabola by 2 to the right and 3 down. If we had merely wanted
to know where the vertex was, we could have gotten that from equation (11.3):

h = − b

2a
= − −4

2 · 1
= 2

and
k = f(2) = 22 − 4 · 2 + 1 = −3

so V = (2,−3), as we already knew. �

11.2 Plynomial Functions of Higher Degree

Understanding polynomials of degree greater than 2 becomes a lot more difficult. They’re harder to
factor and harder to graph. However, there are some techniques.

The first is long division. Recall that when we divide two numbers, say 241 ÷ 5, we use long
division to find the quotient and remainder:

48
5
)

241
200
41
40
1

In this case 241 is called the dividend (that is, the number to be divided), 5 is called the divisor
(that is, the number doing the dividing), 48 is called the quotient, and 1 is called the remainder.
This information can be summarized by the equation

241
5

= 48 +
1
5

(11.4)

If we were to multiply both sides of this by the divisor, 5, we would get the alternate form of the
equation

241 = 5 · 48 + 1 (11.5)

17



In general, the procedure outlined above is called the division algorithm: given any two integers
p and d, with d 6= 0, there exist unique integers q and r such that

p = dq + r, or
p

d
= q +

r

d
, and where 0 ≤ r < d (11.6)

Here p is the dividend, d the divisor, q the quotient, and r the remainder. Long division is merely
a method of obtaining q and r.

The remarkable thing about polynomials is that they, too, obey a division algorithm: given any
two real polynomials p(x) and d(x) 6= 0 (the dividend and divisor), there exist unique polynomials
q(x) and r(x) (the quotient and remainder) such that:

p(x) = d(x)q(x)+r(x), or
p(x)
d(x)

= q(x)+
r(x)
d(x)

, and where 0 ≤ deg(r(x)) < deg(d(x)) (11.7)

And analogously there is a method of long division of polynomials which gives a procedure of
obtaining q(x) and r(x). The method is almost identical to that for numbers, except it proceeds by
paying attention to the leading terms of the dividend and divisor.

Example 11.2 Let p(x) = x3 − 3x2 − 37 and d(x) = x − 5. Long division will give us q(x) and
r(x):

x2 + 2x+ 10
x− 5

)
x3 − 3x2 − 37

− x3 + 5x2

2x2

− 2x2 + 10x
10x− 37

− 10x+ 50
13

Thus, we know that
x3 − 3x2 − 37︸ ︷︷ ︸

p(x)

= (x− 5)︸ ︷︷ ︸
d(x)

(x2 + 2x+ 10)︸ ︷︷ ︸
q(x)

+ 13︸︷︷︸
r(x)

�

A simpler method, called synthetic division, but which only works with degree one divisors, uses
only the coefficients of the dividend, and only negative of the constant term in the divisor. The
result is the coefficients of the quotient and the remainder.

Example 11.3 Let us divide the polynomials of the previous example by using synthetic division:

1 − 3 0 − 37

5 5 10 50

1 2 10 13

The last number, 13, is the remainder, and the other numbers below, 1, 2 and 10, are the coefficients
of the quotient q(x). Thus, again,

x3 − 3x2 − 37︸ ︷︷ ︸
1 −3 0 −37

= (x− 5)︸ ︷︷ ︸
5

(x2 + 2x+ 10)︸ ︷︷ ︸
1 2 10

+ 13︸︷︷︸
13

�

Some important theorems to note:
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Theorem 11.4 (Rational Zeros Theorem) Let f(x) = anx
2 + an−1x

n−1 + · · ·+ a1x+ a0 be a
real polynomial with integer coefficients ai (that is ai ∈ Z). If a rational number p/q is a root, or
zero, of f(x), then

p divides a0 and q divides an �

Theorem 11.5 (Intermediate Value Theorem) Let f(x) be a real polynomial. If there are real
numbers a < b such that f(a) and f(b) have opposite signs, i.e. one of the following holds

f(a) < 0 < f(b)
f(a) > 0 > f(b)

then there is at least one number c, a < c < b, such that f(c) = 0. That is, f(x) has a root in the
interval (a, b).

x

y

a b

c

f(a)

f(b)

�

Theorem 11.6 (Remainder Theorem) If a real polynomial p(x) is divided by (x − c) with the
result that

p(x) = (x− c)q(x) + r

(r is a number, i.e. a degree 0 polynomial, by the division algorithm mentioned above), then

r = p(c)

What do we use these theorems for? To narrow the list of guesses as to the possible roots of a given
polynomial. The list of guesses is infinite, and we don’t want to sit around guessing till the end of
time, so having something like the rational zeros theorem and the intermediate value theorem allows
us to drastically reduce the number of possibilities. The next example demonstrates how to do this.

Example 11.7 Find all the zeros of f(x) = x5 − 3x4 + 3x3 − 5x2 + 12.

Solution: By the Rational Zeros Theorem we know that if there is any rational root p/q at all, then
p must divide 12 and q must divide 1. Thus, we don’t have to worry about q, since it’s only divisors
are ±1. Thus, the possible rational roots are

p

q
∈ {±1,±2,±3,±4,±6,±12}

We begin with the simplest, 1: by synthetic division we have

1 − 3 3 − 5 0 12

1 1 − 2 1 − 4 − 4

1 − 2 1 − 4 − 4 8
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Since the remainder is 8, we know (x− 1) isn’t a factor. We move on to x = −1:

1 − 3 3 − 5 0 12

− 1 − 1 4 − 7 12 − 12

1 − 4 7 − 12 12 0

Success! We now know that −1 is a root, and (x+ 1) is a factor:

x5 − 3x4 + 3x3 − 5x2 + 12 = (x+ 1)(x4 − 4x3 + 7x2 − 12x+ 12)

Now to factor the quotient x4 − 4x3 + 7x2 − 12x+ 12, we repeat the procedure. Luckily a4 = 1 and
a0 = 12, as above, so our choices of p/q are the same. We already eliminated 1 as a possibility, so
there’s no point trying it again. It could be, however, that −1 is a double root, so let’s try that:

1 − 4 7 − 12 12

− 1 − 1 5 − 12 24

1 − 5 12 − 24 36

Alas, no. Moving on to x = 2, we find

1 − 4 7 − 12 12

2 2 − 4 6 − 12

1 − 2 3 − 6 0

Success! Now we know

x5 − 3x4 + 3x3 − 5x2 + 12 = (x+ 1)(x− 2)(x3 − 2x2 + 3x− 6)

We can factor x3 − 2x2 + 3x− 6 by grouping:

x3 − 2x2 + 3x− 6 = (x3 − 2x2) + (3x− 6) = x2(x− 2) + 3(x− 2) = (x2 + 3)(x− 2)

We have thus completely factored f(x):

f(x) = x5 − 3x4 + 3x3 − 5x2 + 12
= (x+ 1)(x− 2)(x2 + 3)(x− 2)

= (x+ 1)(x− 2)2(x2 + 3)

(Note that x2 + 3 is irreducible.) �

Remark 11.8 It is a fact (which follows from the Fundamental Theorem of Algebra) that every
real polynomial p(x) of degree greater than 1 can be factored into a product of linear (that is, degree
1) and irreducible quadratic (that is, degree 2) polynomials,

f(x) = a(x− c1)n1(x− c2)n2 · · · (x− ck)nk(x2 + b1x+ c1)m1(x2 + b2x+ c2)m2 · · · (x2 + b`x+ c`)m`

This was illustrated in the above example:

x5 − 3x4 + 3x3 − 5x2 + 12 = (x+ 1)(x− 2)2(x2 + 3) �

Remark 11.9 We could have used the remainder theorem on x = 0, 1 and −1: p(0) = 12, p(1) =
1− 3 + 3− 5 + 12 = 8 and p(−1) = −1− 3− 3− 5− 12 = 0. This would have saved us a little work
in finding the first root, x = −1. �
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11.3 Exponential and Logarithmic Functions

A special function we wish to single out is the exponential function: given a > 0, we define the
function f : R→ (0,∞), denoted by the formula f(x) = ax, to be a one-to-one, positive, increasing
function from all reals to the positive reals, which has the usual exponentiation behavior of numbers
for rational x, but which also handles irrational x. For all real x and y the function satisfies the
following rules:

ax+y = axay (11.8)

ax−y =
ax

ay
(11.9)

a0 = 1 (11.10)

The inverse of the exponential function is the logarithm. That is, if f : R → (0,∞) is the
exponential f(x) = ax, then its inverse f−1 : (0,∞) → R is the logarithm f(y) = loga(y). This is
the basis for the equivalence of the expressions y = ax and loga(y) = x,

y = ax ⇐⇒ loga(y) = x (11.11)

In view of the correspondence (11.11), the equations (11.8)-(11.10) for exponentials have analogues
for logarithms. These are the log rules:

loga(MN) = loga(M) + loga(N) (11.12)

loga

(
M

N

)
= loga(M)− loga(N) (11.13)

loga(1) = 0 (11.14)
loga(MN ) = N loga(M) (11.15)

The last one, (11.15), follows from the fact that

loga(MN ) = y ⇐⇒ ay = MN ⇐⇒ ay/N = M

⇐⇒ loga(M) = y/N ⇐⇒ N loga(M) = y

so loga(MN ) = y = N loga(M).

Logs also satisfy the change of base formula: if a, b and c are positive real numbers with a, b 6= 1,
then

logb(c) =
loga(c)
loga(b)

(11.16)

or equivalently
loga(b) · logb(c) = loga(c) (11.17)

The first tells you that logb(c) could be written as a quotient of two logs with a common base a of
your choosing, and the second is just another way of writing it (when I was learning this I found the
second easy to remember because I thought of it as going from a to b and then from b to c is the
same as going from a directly to c. Kind of silly, but it works!).

Example 11.10 Solve 32x−1 = 81.

Solution: 32x−1 = 81 = 34, so since 3t is a one-to-one function, we know the exponents are equal,

2x− 1 = 4. From here it’s easy: x =
5
2

. �
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Example 11.11 Solve 25−2x = 125x+7.

Solution: We are told 52(−2x) = 25−2x = 125x+7 = 53(x+7), so by the one-to-one property of the
exponential, we know 2(−2x) = 3(x+ 7). Simplifying, −4x = 3x+ 21, or −21 = 7x, from which we
get x = −3 . �

Example 11.12 Use the properties of logarithms to write log
√

x

x+ 5
as a sum or difference of

simple logarithmic terms.

Solution:

log
√

x

x+ 5
= log

(
x

x+ 5

)1/2

=
1
2

log
(

x

x+ 5

)
=

1
2

[
log x− log(x+ 5)

]
�

Example 11.13 Solve log(x+ 2) = log 7 + log x.

Solution: First, log(x+ 2) = log 7 + log x = log(7x). Since the logarithm function is one-to-one, we

know x+ 2 = 7x. Therefore 2 = 6x, so x =
1
3

. �
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