
Similarity Classes of Linear Operators

1 Definitions

Two matrices A,B ∈ Rm×n are said to be equivalent matrices if there exist invertible matrices
P ∈ GL(m,R) and Q ∈ GL(n,R) such that

B = PAQ−1

Two square matrices A,B ∈ Rn×n are said to be similar matrices if there exist invertible matrices
P ∈ GL(n,R) invertible such that

B = PAP−1

If V is a real vector space and T,U ∈ L(V ) are linear operators, then T and U are said to be similar
operators if there is an isomorphism φ ∈ GL(V ) such that

U = φ ◦ T ◦ φ−1

Remark 1.1 As mentioned in the definitions of Section 2.1 of Abstract Vector Spaces, similarity
of matrices is an equivalence relation on Rn×n, denoted by ∼, that is A ∼ B if B = PAQ−1, and
the equivalence classes,

[A] = {B ∈ R2×2 |A ∼ B}

partition the set of all matrices R2×2 into disjoint blocks.

An identical result holds for the set of linear operators, L(V ): similarity is an equivalence relation,
i.e. T ∼ U if T is similar to U , and the equivalence classes

[T ] = {U ∈ L(V ) | T ∼ U}

partition L(V ) into disjoint blocks.

The question is, what is the relationship between the blocks in R2×2 and those in L(V )? We will
see that the blocks are in one-to-one correspondence, the correspondence being the result of changing
bases. �

2 Similarity Classes of Linear Operators

Theorem 2.1 Let V and W be finite-dimensional real vector spaces, with dimensions dim(V ) = n
and dim(W ) = m. Then any two matrices A,B ∈ Rm×n are equivalent iff they represent the same
linear transformation T ∈ L(V,W ), but possibly with respect to different ordered bases. Moreover,
if A and B are equivalent, then they represent exactly the same set of linear transformations in
L(V,W ), the T ∈ L(V,W ) varying in accordance with the choice of pairs of ordered bases for V and
W .

Proof: If A and B represent T , that is if A = [T ]γβ and B = [T ]γ
′

β′ , for ordered bases β, β′ for V and
γ, γ′ for W , then by the change of bases theorem, Corollary 4.2 in Abstract Vector Spaces, we have

A = PBQ−1

where P = Mγ,γ′ and Q = Mβ′,β are invertible (because they represent an isomorphism on Fn), so
that A and B are equivalent. Conversely, if A represents T , that is if A = [T ]γβ , and A and B are

1



equivalent, then A = PBQ−1 for some invertible matrices P ∈ Rm×m and Q ∈ Rn×n. By Theorem
2.10 in Abstract Vector Spaces, given P and the ordered basis γ for W , we can get another unique
ordered basis γ′ for W such that Q = Mγ,γ′ , and similarly there exists a unique ordered basis β′ for
W such that P = Mβ,β′ , whence

B = QAP−1 = Mγ,γ′ [T ]γβMβ′,β = [T ]γ
′

β′

and B represents T with respect to β′ and γ′. Note that it is possible that A represents several
transformations, depending on the bases chosen for V and W . By symmetry (i.e. by reversing the
roles of A and B in the above argument) we see that A and B represent the same set of linear
transformations. �

Theorem 2.2 If V is an n-dimensional real vector space, then any two operators T,U ∈ L(V ) are
similar iff there is a matrix A ∈ Rn×n that represents both operators, but with respect to possibly
different ordered bases. Moreover, if T and U are similar, then they represent exactly the same set
of matrices in Rn×n, the A ∈ Rn×n varying in accordance with the choice of pairs of ordered bases
for V .

Proof: If T and U are represented by A ∈ Rn×n, that is if [T ]β = A = [U ]γ for some ordered bases
β and γ for V , then

[U ]γ = [T ]β = Mγ,β [T ]γMβ,γ

Defining φ : V → V by φ(ci) = bi gives an isomorphism of V with

[φ]γ =
[
[φ(c1)]γ · · · [φ(cn)]γ

]
=

[
[b1]γ · · · [bn]γ

]
= Mβ,γ

so that
[U ]γ = [T ]β = Mγ,β [T ]γMβ,γ = [φ]−1γ [T ]γ [φ]γ = [φ−1 ◦ T ◦ φ]γ

whence, by uniqueness (Theorem 3.8), U = φ ◦ T ◦ φ−1, and U ∼ T , whence T ∼ U . Conversely,
if T ∼ U , suppose A = [T ]β for some ordered basis β for V . Then using the inverse automorphism
ψ = φ−1, we have

[U ]β = [ψ ◦ T ◦ ψ−1]β = [ψ]β [T ]β [ψ]−1β = Mγ,β [T ]βM
−1
γ,β

whence
A = [T ]β = M−1γ,β [U ]βMγ,β = Mγ,β [U ]βM

−1
γ,β = [U ]γ

and A represents T and U , but possibly w.r.t. different ordered bases. By symmetry, T and U are
represented by the same set of matrices, depending on the ordered bases chosen for V . �

Remark 2.3 These two theorems can be summarized as follows: if S ⊆ L(V ) is a similarity
equivalence class, then there is a corresponding class T ⊆Mn(F ) of all matrices that represent any
T ∈ S, and S is also the set of all operators in L(V ) that are represented by any A ∈ T , so that

S ←→ T

which, since L(V ) ∼= Mn(F ), means L(V ) is partitioned into similarity classes corresponding to
exactly the same partitioning in Mn(F ). �
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