Similarity Classes of Linear Operators

1 Definitions

Т

Two matrices $A, B \in \mathbb{R}^{m \times n}$ are said to be **equivalent matrices** if there exist invertible matrices $P \in GL(m, \mathbb{R})$ and $Q \in GL(n, \mathbb{R})$ such that

$$B = PAQ^{-1}$$

Two square matrices $A, B \in \mathbb{R}^{n \times n}$ are said to be **similar matrices** if there exist invertible matrices $P \in GL(n, \mathbb{R})$ invertible such that

$$B = PAP^{-1}$$

If V is a real vector space and $T, U \in \mathcal{L}(V)$ are linear operators, then T and U are said to be similar **operators** if there is an isomorphism $\phi \in GL(V)$ such that

$$U = \phi \circ T \circ \phi^{-1}$$

Remark 1.1 As mentioned in the definitions of Section 2.1 of Abstract Vector Spaces, similarity of matrices is an equivalence relation on $\mathbb{R}^{n \times n}$, denoted by \sim , that is $A \sim B$ if $B = PAQ^{-1}$, and the equivalence classes,

 $[A] = \{B \in \mathbb{R}^{2 \times 2} \mid A \sim B\}$

partition the set of all matrices $\mathbb{R}^{2\times 2}$ into disjoint blocks.

An identical result holds for the set of linear operators, $\mathcal{L}(V)$: similarity is an equivalence relation, *i.e.* $T \sim U$ if T is similar to U, and the equivalence classes

$$[T] = \{ U \in \mathcal{L}(V) \mid T \sim U \}$$

partition $\mathcal{L}(V)$ into disjoint blocks.

The question is, what is the relationship between the blocks in $\mathbb{R}^{2\times 2}$ and those in $\mathcal{L}(V)$? We will see that the blocks are in one-to-one correspondence, the correspondence being the result of changing bases.

2 Similarity Classes of Linear Operators

Theorem 2.1 Let V and W be finite-dimensional real vector spaces, with dimensions $\dim(V) = n$ and $\dim(W) = m$. Then any two matrices $A, B \in \mathbb{R}^{m \times n}$ are equivalent iff they represent the same linear transformation $T \in \mathcal{L}(V, W)$, but possibly with respect to different ordered bases. Moreover, if A and B are equivalent, then they represent exactly the same set of linear transformations in $\mathcal{L}(V, W)$, the $T \in \mathcal{L}(V, W)$ varying in accordance with the choice of pairs of ordered bases for V and W.

Proof: If A and B represent T, that is if $A = [T]^{\gamma}_{\beta}$ and $B = [T]^{\gamma'}_{\beta'}$, for ordered bases β , β' for V and γ , γ' for W, then by the change of bases theorem, Corollary 4.2 in Abstract Vector Spaces, we have

$$A = PBQ^{-1}$$

where $P = M_{\gamma,\gamma'}$ and $Q = M_{\beta',\beta}$ are invertible (because they represent an isomorphism on F^n), so that A and B are equivalent. Conversely, if A represents T, that is if $A = [T]^{\gamma}_{\beta}$, and A and B are

equivalent, then $A = PBQ^{-1}$ for some invertible matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$. By Theorem 2.10 in Abstract Vector Spaces, given P and the ordered basis γ for W, we can get another unique ordered basis γ' for W such that $Q = M_{\gamma,\gamma'}$, and similarly there exists a unique ordered basis β' for W such that $P = M_{\beta,\beta'}$, whence

$$B = QAP^{-1} = M_{\gamma,\gamma'}[T]^{\gamma}_{\beta}M_{\beta',\beta} = [T]^{\gamma'}_{\beta'}$$

and B represents T with respect to β' and γ' . Note that it is possible that A represents several transformations, depending on the bases chosen for V and W. By symmetry (i.e. by reversing the roles of A and B in the above argument) we see that A and B represent the same set of linear transformations.

Theorem 2.2 If V is an n-dimensional real vector space, then any two operators $T, U \in \mathcal{L}(V)$ are similar iff there is a matrix $A \in \mathbb{R}^{n \times n}$ that represents both operators, but with respect to possibly different ordered bases. Moreover, if T and U are similar, then they represent exactly the same set of matrices in $\mathbb{R}^{n \times n}$, the $A \in \mathbb{R}^{n \times n}$ varying in accordance with the choice of pairs of ordered bases for V.

Proof: If T and U are represented by $A \in \mathbb{R}^{n \times n}$, that is if $[T]_{\beta} = A = [U]_{\gamma}$ for some ordered bases β and γ for V, then

$$[U]_{\gamma} = [T]_{\beta} = M_{\gamma,\beta}[T]_{\gamma}M_{\beta,\gamma}$$

Defining $\phi: V \to V$ by $\phi(c_i) = b_i$ gives an isomorphism of V with

$$[\phi]_{\gamma} = \left[[\phi(c_1)]_{\gamma} \cdots [\phi(c_n)]_{\gamma} \right] = \left[[b_1]_{\gamma} \cdots [b_n]_{\gamma} \right] = M_{\beta,\gamma}$$

so that

$$[U]_{\gamma} = [T]_{\beta} = M_{\gamma,\beta}[T]_{\gamma}M_{\beta,\gamma} = [\phi]_{\gamma}^{-1}[T]_{\gamma}[\phi]_{\gamma} = [\phi^{-1} \circ T \circ \phi]_{\gamma}$$

whence, by uniqueness (Theorem 3.8), $U = \phi \circ T \circ \phi^{-1}$, and $U \sim T$, whence $T \sim U$. Conversely, if $T \sim U$, suppose $A = [T]_{\beta}$ for some ordered basis β for V. Then using the inverse automorphism $\psi = \phi^{-1}$, we have

$$[U]_{\beta} = [\psi \circ T \circ \psi^{-1}]_{\beta} = [\psi]_{\beta}[T]_{\beta}[\psi]_{\beta}^{-1} = M_{\gamma,\beta}[T]_{\beta}M_{\gamma,\beta}^{-1}$$

whence

$$A = [T]_{\beta} = M_{\gamma,\beta}^{-1}[U]_{\beta}M_{\gamma,\beta} = M_{\gamma,\beta}[U]_{\beta}M_{\gamma,\beta}^{-1} = [U]_{\gamma}$$

and A represents T and U, but possibly w.r.t. different ordered bases. By symmetry, T and U are represented by the same set of matrices, depending on the ordered bases chosen for V.

Remark 2.3 These two theorems can be summarized as follows: if $S \subseteq \mathcal{L}(V)$ is a similarity equivalence class, then there is a corresponding class $\mathcal{T} \subseteq M_n(F)$ of all matrices that represent any $T \in S$, and S is also the set of all operators in $\mathcal{L}(V)$ that are represented by any $A \in \mathcal{T}$, so that

 $\mathcal{S} \longleftrightarrow \mathcal{T}$

which, since $\mathcal{L}(V) \cong M_n(F)$, means $\mathcal{L}(V)$ is partitioned into similarity classes corresponding to exactly the same partitioning in $M_n(F)$.