Similarity Classes of Linear Operators

1 Definitions

Two matrices $A, B \in \mathbb{R}^{m \times n}$ are said to be equivalent matrices if there exist invertible matrices $P \in \operatorname{GL}(m, \mathbb{R})$ and $Q \in \mathrm{GL}(n, \mathbb{R})$ such that

$$
B=P A Q^{-1}
$$

Two square matrices $A, B \in \mathbb{R}^{n \times n}$ are said to be similar matrices if there exist invertible matrices $P \in \operatorname{GL}(n, \mathbb{R})$ invertible such that

$$
B=P A P^{-1}
$$

If V is a real vector space and $T, U \in \mathcal{L}(V)$ are linear operators, then T and U are said to be similar operators if there is an isomorphism $\phi \in \mathrm{GL}(V)$ such that

$$
U=\phi \circ T \circ \phi^{-1}
$$

Remark 1.1 As mentioned in the definitions of Section 2.1 of Abstract Vector Spaces, similarity of matrices is an equivalence relation on $\mathbb{R}^{n \times n}$, denoted by \sim, that is $A \sim B$ if $B=P A Q^{-1}$, and the equivalence classes,

$$
[A]=\left\{B \in \mathbb{R}^{2 \times 2} \mid A \sim B\right\}
$$

partition the set of all matrices $\mathbb{R}^{2 \times 2}$ into disjoint blocks.
An identical result holds for the set of linear operators, $\mathcal{L}(V)$: similarity is an equivalence relation, i.e. $T \sim U$ if T is similar to U, and the equivalence classes

$$
[T]=\{U \in \mathcal{L}(V) \mid T \sim U\}
$$

partition $\mathcal{L}(V)$ into disjoint blocks.
The question is, what is the relationship between the blocks in $\mathbb{R}^{2 \times 2}$ and those in $\mathcal{L}(V)$? We will see that the blocks are in one-to-one correspondence, the correspondence being the result of changing bases.

2 Similarity Classes of Linear Operators

Theorem 2.1 Let V and W be finite-dimensional real vector spaces, with dimensions $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Then any two matrices $A, B \in \mathbb{R}^{m \times n}$ are equivalent iff they represent the same linear transformation $T \in \mathcal{L}(V, W)$, but possibly with respect to different ordered bases. Moreover, if A and B are equivalent, then they represent exactly the same set of linear transformations in $\mathcal{L}(V, W)$, the $T \in \mathcal{L}(V, W)$ varying in accordance with the choice of pairs of ordered bases for V and W.
Proof: If A and B represent T, that is if $A=[T]_{\beta}^{\gamma}$ and $B=[T]_{\beta^{\prime}}^{\gamma^{\prime}}$, for ordered bases β, β^{\prime} for V and γ, γ^{\prime} for W, then by the change of bases theorem, Corollary 4.2 in Abstract Vector Spaces, we have

$$
A=P B Q^{-1}
$$

where $P=M_{\gamma, \gamma^{\prime}}$ and $Q=M_{\beta^{\prime}, \beta}$ are invertible (because they represent an isomorphism on F^{n}), so that A and B are equivalent. Conversely, if A represents T, that is if $A=[T]_{\beta}^{\gamma}$, and A and B are
equivalent, then $A=P B Q^{-1}$ for some invertible matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$. By Theorem 2.10 in Abstract Vector Spaces, given P and the ordered basis γ for W, we can get another unique ordered basis γ^{\prime} for W such that $Q=M_{\gamma, \gamma^{\prime}}$, and similarly there exists a unique ordered basis β^{\prime} for W such that $P=M_{\beta, \beta^{\prime}}$, whence

$$
B=Q A P^{-1}=M_{\gamma, \gamma^{\prime}}[T]_{\beta}^{\gamma} M_{\beta^{\prime}, \beta}=[T]_{\beta^{\prime}}^{\gamma^{\prime}}
$$

and B represents T with respect to β^{\prime} and γ^{\prime}. Note that it is possible that A represents several transformations, depending on the bases chosen for V and W. By symmetry (i.e. by reversing the roles of A and B in the above argument) we see that A and B represent the same set of linear transformations.

Theorem 2.2 If V is an n-dimensional real vector space, then any two operators $T, U \in \mathcal{L}(V)$ are similar iff there is a matrix $A \in \mathbb{R}^{n \times n}$ that represents both operators, but with respect to possibly different ordered bases. Moreover, if T and U are similar, then they represent exactly the same set of matrices in $\mathbb{R}^{n \times n}$, the $A \in \mathbb{R}^{n \times n}$ varying in accordance with the choice of pairs of ordered bases for V.

Proof: If T and U are represented by $A \in \mathbb{R}^{n \times n}$, that is if $[T]_{\beta}=A=[U]_{\gamma}$ for some ordered bases β and γ for V, then

$$
[U]_{\gamma}=[T]_{\beta}=M_{\gamma, \beta}[T]_{\gamma} M_{\beta, \gamma}
$$

Defining $\phi: V \rightarrow V$ by $\phi\left(c_{i}\right)=b_{i}$ gives an isomorphism of V with

$$
[\phi]_{\gamma}=\left[\left[\phi\left(c_{1}\right)\right]_{\gamma} \cdots\left[\phi\left(c_{n}\right)\right]_{\gamma}\right]=\left[\left[b_{1}\right]_{\gamma} \cdots\left[b_{n}\right]_{\gamma}\right]=M_{\beta, \gamma}
$$

so that

$$
[U]_{\gamma}=[T]_{\beta}=M_{\gamma, \beta}[T]_{\gamma} M_{\beta, \gamma}=[\phi]_{\gamma}^{-1}[T]_{\gamma}[\phi]_{\gamma}=\left[\phi^{-1} \circ T \circ \phi\right]_{\gamma}
$$

whence, by uniqueness (Theorem 3.8), $U=\phi \circ T \circ \phi^{-1}$, and $U \sim T$, whence $T \sim U$. Conversely, if $T \sim U$, suppose $A=[T]_{\beta}$ for some ordered basis β for V. Then using the inverse automorphism $\psi=\phi^{-1}$, we have

$$
[U]_{\beta}=\left[\psi \circ T \circ \psi^{-1}\right]_{\beta}=[\psi]_{\beta}[T]_{\beta}[\psi]_{\beta}^{-1}=M_{\gamma, \beta}[T]_{\beta} M_{\gamma, \beta}^{-1}
$$

whence

$$
A=[T]_{\beta}=M_{\gamma, \beta}^{-1}[U]_{\beta} M_{\gamma, \beta}=M_{\gamma, \beta}[U]_{\beta} M_{\gamma, \beta}^{-1}=[U]_{\gamma}
$$

and A represents T and U, but possibly w.r.t. different ordered bases. By symmetry, T and U are represented by the same set of matrices, depending on the ordered bases chosen for V.

Remark 2.3 These two theorems can be summarized as follows: if $\mathcal{S} \subseteq \mathcal{L}(V)$ is a similarity equivalence class, then there is a corresponding class $\mathcal{T} \subseteq M_{n}(F)$ of all matrices that represent any $T \in \mathcal{S}$, and \mathcal{S} is also the set of all operators in $\mathcal{L}(V)$ that are represented by any $A \in \mathcal{T}$, so that

$$
\mathcal{S} \longleftrightarrow \mathcal{T}
$$

which, since $\mathcal{L}(V) \cong M_{n}(F)$, means $\mathcal{L}(V)$ is partitioned into similarity classes corresponding to exactly the same partitioning in $M_{n}(F)$.

