1 Exponential Problems

Т

Example 1.1 Solve $\left(\frac{1}{6}\right)^{-3x-2} = 36^{x+1}$.

Solution: Note that $\frac{1}{6} = 6^{-1}$ and $36 = 6^2$. Therefore the equation can be written

$$(6^{-1})^{-3x-2} = (6^2)^{x+1}$$

Using the power of a power property of exponential functions, we can multiply the exponents:

$$6^{3x+2} = 6^{2x+2}$$

But we know the exponential function 6^x is one-to-one. Therefore the exponents are equal,

:

$$3x + 2 = 2x + 2$$

Solving this for x gives x = 0.

Example 1.2 Solve $25^{-2x} = 125^{x+7}$.

Solution: Note that $25 = 5^2$ and $125 = 5^3$. Therefore the equation is

$$(5^2)^{-2x} = (5^3)^{x+7}$$

Using the power of a power property to multiply exponents gives

$$5^{-4x} = 5^{3x+21}$$

Since the exponential function 5^x is one-to-one, the exponents must be equal:

$$-4x = 3x + 21$$

Solving this for x gives x = -3.

Example 1.3 Solve $e^x e^2 = \frac{e^4}{e^{x+1}}$.

Solution: Using the product and quotient properties of exponents we can rewrite the equation as

$$e^{x+2} = e^{4-(x+1)}$$

= e^{4-x-1}
= e^{3-x}

Since the exponential function e^x is one-to-one, we know the exponents are equal:

x + 2 = 3 - x

Solving for x gives $x = \frac{1}{2}$.

2 Log Problems

Example 2.1 Wite the following equations in exponential form:

(a) $2 = \log_3 9$ (b) $-3 = \log_e \frac{1}{e^3}$ (c) $\frac{1}{2} = \log_{81} 9$ (d) $\log_4 16 = 2$ (e) $\log_{10} 0.0001 = -3$

Solution: Use the correspondence $\log_a y = x \iff y = a^x$:

(a)
$$2 = \log_3 9 \iff 9 = 3^2$$

(b) $-3 = \log_e \frac{1}{e^3} \iff \frac{1}{e^3} = e^{-3}$
(c) $\frac{1}{2} = \log_{81} 9 \iff 9 = 81^{1/2}$
(d) $\log_4 16 = 2 \iff 16 = 4^2$
(e) $\log_{10} 0.001 = -3 \iff 0.001 = 10^{-3}$

Example 2.2 Wite the following equations in log form:

(a) $2^{-3} = \frac{1}{8}$ (b) $8^{0} = 1$ (c) $\left(\frac{1}{7}\right)^{-2} = 49$ (d) $27^{-2/3} = \frac{1}{9}$ (e) $a^{b} = c$

Solution: Use the correspondence $y = a^x \iff \log_a y = x$:

(a)
$$2^{-3} = \frac{1}{8} \iff \boxed{\log_2 \frac{1}{8} = -3}$$

(b) $8^0 = 1 \iff \boxed{\log_8 1 = 0}$
(c) $\left(\frac{1}{7}\right)^{-2} = 49 \iff \boxed{\log_{\frac{1}{7}} 49 = -2}$
(d) $27^{-2/3} = \frac{1}{9} \iff \boxed{\log_{27} \frac{1}{9} = -\frac{2}{3}}$
(e) $a^b = c \iff \boxed{\log_a c = b}$

Example 2.3 Solve $-15 = -8\ln(3x) + 7$.

Solution: Subtract 7 from both sides and divide by -8 to get

$$\frac{11}{4} = \ln(3x)$$

Note, ln is the **natural logarithm**, which is the logarithm to the base e: $\ln y = \log_e y$. Now, the equation above means

$$\frac{11}{4} = \log_e(3x)$$

so by the correspondence $y = a^x \iff \log_a y = x$,

$$3x = e^{11/4}$$

which means

$$x = \frac{1}{3}e^{11/4}$$

Example 2.4 Write the expression $\log_6 30 - \log_6 10$ as a single term.

Solution: This just means use the quotient rule:

$$\log_6 30 - \log_6 10 = \log_6 \frac{30}{10} = \boxed{\log_6 3}$$

Example 2.5 Solve $\log x - 1 = -\log(x - 9)$.

Solution: Put all logarightms on the same side, and all numbers on the other side, so we can use the correspondence $y = a^x \iff \log_a y = x$:

$$\log x + \log(x - 9) = 1$$

Use the product rule to simplify the left side,

$$\log(x(x-9)) = 1$$

Note, $\log y$ means the base is to be understood as 10, that is we have

$$\log_{10}(x(x-9)) = 1$$

By the correspondence we know

 $x(x-9) = 10^1 = 10$

That is,

$$x^2 - 9x - 10 = 0$$

This polynomial factors: (x-10)(x+1) = 0, so x = 10 or x = -1. Looking at the original equation, we see we can't use x = -1, because $\log(-1)$ and $\log(-1-9) = \log(-10)$ are undefined. Thus, our only solution is

$$x = 10$$