Quiz 7

MATH 2300-001
October 7, 2008

1. For the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{\int_{1}^{n} \frac{1}{x^{2}} d x\right\}_{n=1}^{\infty}$:
(a) List the first five terms of the sequence, in simplified form.
(b) State the limit of the sequence, if it exists.

$$
\begin{gathered}
a_{n}=\int_{1}^{n} \frac{1}{x^{2}} d x=\left[-\frac{1}{x}\right]_{1}^{n}=1-\frac{1}{n}=\frac{n-1}{n} \\
a_{1}=\frac{0}{1}=0, \quad a_{2}=\frac{1}{2}, \quad a_{3}=\frac{2}{3}, \quad a_{4}=\frac{3}{4}, \quad a_{5}=\frac{4}{5} \\
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=1-0=1 .
\end{gathered}
$$

2. State a differential equation that has solutions $y_{1}=\pi e^{-5 x}$ and $y_{2}=26 x e^{-5 x}$.

Note the the solutions are of the form $c_{1} e^{a x}, c_{2} x e^{a x}$, which comes from the auxiliary equation $(k-a)^{2}=0 \Rightarrow k^{2}-2 a k+a^{2}=0$. This would give the differential equation $y^{\prime \prime}-2 a y^{\prime}+a^{2} y=0$.
Since we have $a=-5$, the differential equation is $y^{\prime \prime}+10 y^{\prime}+25 y=0$.

