\qquad

Quiz 3

1. Graph the piecewise function $f(x)=\left\{\begin{array}{ll}x+2, & \text { if }-6 \leq x \leq 2 \\ 2|x-4|, & \text { if } x>2\end{array}\right.$.

Solution:

2. Graph $g(x)=-(x-3)^{2}+2$.

Solution:

3. Graph the set of points $\left\{(x, y) \mid(x+2)^{2}+(y-3)^{2} \leq 9\right\}$. (This set can also be written using the distance formula, $\{(x, y) \mid d((x, y),(-2,3)) \leq 3\}$.)

Solution:

4. Consider the graph of a function f :

(a) Where is f increasing?

On $(-3,0) \cup(3,5]$
(b) Where is f decreasing?

On $[-5,-3) \cup(0,3)$
(c) What are the local maxima of f ?
$y=4$ at $(0,4)$ (We don't consider $y=2$ at $(-5,2)$ and $(5,2)$, because 2 is less than 4 . If it had been the other way around, we would have said all three points were local maxima, with the endpoints being the global maxima.)
(d) What are the local minima of f ? $y=-4$ at $(-3,-4),(3,-4)$
5. Find the equation of the line passing through the points $(-1,2)$ and $(2,3)$, and put it in standard form.

Using the equation for the slope we immediately get

$$
m=\frac{3-2}{2-(-1)}=\frac{1}{3}
$$

Pick one of the points, say $(2,3)$, and use the point-slope formula:

$$
y-3=\frac{1}{3}(x-2)
$$

Simplify and solve for y, and you're done

$$
y=\frac{1}{3} x+\frac{7}{3}
$$

