Quiz 2

1. Solve $x^{2}-5=0$ by using the zero product property.

$$
\left(x-5^{1 / 2}\right)\left(x+5^{1 / 5}\right)=0, \quad \text { so } \quad x=5^{1 / 2} \text { or }-5^{1 / 2}
$$

2. Solve $x^{2}+5 x=3$ by completing the square.

Since $\frac{5 x}{2 x}=\frac{5}{2}$, we add the square of this to both sides,

$$
x^{2}+5 x+\frac{25}{4}=3 \cdot \frac{4}{4}+\frac{25}{4}=\frac{37}{4}
$$

Then, by the square of a sum formula

$$
\left(x+\frac{5}{2}\right)^{2}=\frac{37}{4}
$$

Take the square root of both sides, and you get

$$
x+\frac{5}{2}= \pm \frac{\sqrt{37}}{2}
$$

Subtract $\frac{5}{2}$ from both sides and you're done:

$$
x=-\frac{5}{2} \pm \frac{\sqrt{37}}{2}
$$

3. (a) State the quadratic formula.

$$
\text { If } a x^{2}+b x+c=0, \text { then } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(b) Use the quadratic formula to solve $8 x^{2}-5 x-1=0$.

$$
\text { Here } a=8, b=-5 \text { and } c=-1 \text {, so } \quad x=\frac{5 \pm \sqrt{5^{2}-4 \cdot 8 \cdot(-1)}}{2 \cdot 8}=\frac{5 \pm \sqrt{57}}{16}
$$

4. Solve $x^{2 / 3}-x^{1 / 3}-15=0$ by u-substitution.

Let $u=x^{1 / 3}$. Then the equation becomes

$$
u^{2}-u-15=0
$$

This won't factor nicely, so just use the quadratic formula to get u :

$$
u=\frac{1 \pm \sqrt{1^{2}-4 \cdot 1 \cdot(-15)}}{2 \cdot 1}=\frac{1 \pm \sqrt{61}}{2}
$$

But $u=x^{1 / 3}$, so to get x, cube both sides to get

$$
x=\left(\frac{1 \pm \sqrt{61}}{2}\right)^{3}
$$

5. Solve $3|5-7 d|+7 \geq 4$.

First, subtract 7 from both sides,

$$
3|5-7 d| \geq-3
$$

then divide by 3 ,

$$
|5-7 d| \geq-1
$$

Now that all numbers are on the other side of the inequality, we apply the definition of absolute value, which means we consider two cases:
(a) Case 1: $5-7 d \geq-1$. In this case, subtract 5 from both sides,

$$
-7 d \geq-6
$$

and divide by -7 :

$$
d \leq \frac{6}{7}
$$

(b) Case 2: $-(5-7 d) \geq-1$. In this case, multiply both sides by -1 to get rid of the negative:

$$
5-7 d \leq 1
$$

Subtract 5:

$$
-7 d \leq-4
$$

and divide by -7 :

$$
d \geq \frac{4}{7}
$$

Putting all this together gives the solution set as

$$
\left\{d \left\lvert\, \frac{4}{7} \leq d \leq \frac{6}{7}\right.\right\} \quad \text { or in interval notation } \quad\left[\frac{4}{7}, \frac{6}{7}\right]
$$

