Quiz 13

MATH 2300-001
November 18, 2008

1. Use the Maclaurin series for $x \sin x$, show that

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 k+2)}{(2 k+1)!}=\sin (1)+\cos (1) .
$$

- Express $x \sin x$ as its Maclaurin series.
- Differentiate the function.
- Differentiate the power series.
- Relate the new power series with the series we are trying to evaluate.
- Use this relationship and the derivative of the function to evaluate the series.
- Fill in the following diagram:

$$
\begin{array}{cc}
x \sin x & = \\
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+2} \\
\frac{d}{d x} \downarrow & \downarrow^{\left\lvert\, \frac{d}{d x}\right.} \\
\sin x+x \cos x & =\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 k+2)}{(2 k+1)!} x^{2 k+1} \\
x=1 \downarrow \\
\sin (1)+\cos (1) & =\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 k+2)}{(2 k+1)!}
\end{array}
$$

2. Use a similar method to determine what $\sum_{k=1}^{\infty} \frac{1}{2^{k} k}$ converges to. Hint: Construct a diagram similar to above, starting in the lower right, and fill in any expressions and operations, working counterclockwise.

$$
\begin{array}{rcc}
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}=\sum_{k=1}^{\infty} x^{k-1} \\
\int \cdot d x \downarrow \\
-\ln (1-x) & = & \downarrow \cdot d x \\
x=\frac{1}{2} \downarrow & \sum_{k=1}^{\infty} \frac{1}{k} x^{k} \\
-\ln \left(\frac{1}{2}\right)=\ln 2 & =\downarrow^{1}=\frac{1}{2} \\
\sum_{k=1}^{\infty} \frac{1}{2^{k} k}
\end{array}
$$

3. Solve the differential equation $y^{\prime \prime}-y=0$.

- Suppose a solution to the differential equation can be expressed as a power series:

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

- Find power series representations for y^{\prime} and $y^{\prime \prime}$.
- Substitute the formulas into the equation, simplifying if possible.
- Shift the series so that each have the same power of x, and combine.
- Compare coefficients on both sides of the equation to setup recursive relations for a_{k}. Split into odd and even terms if necessary.
- Express a general term in terms of an early term (say express a_{k} in terms of a_{1}).
- Substitute your formulas into the power series for y.
- Identify any common series.

$$
\begin{aligned}
y & =\sum_{k=0}^{\infty} a_{k} x^{k} \quad y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k} \\
0 & =y^{\prime \prime}-y=\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k}\right) x^{k} \\
0 & =a_{k+2}(k+2)(k+1)-a_{k} \\
a_{k+2} & =\frac{a_{k}}{(k+2)(k+1)} \\
a_{k} & =\frac{a_{k-2}}{k(k-1)} \\
a_{2} & =\frac{a_{0}}{2 \cdot 1}=\frac{a_{0}}{2!} \quad a_{4}=\frac{a_{2}}{4 \cdot 3}=\frac{a_{0}}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{a_{0}}{4!} \quad a_{6}=\frac{a_{1}}{6 \cdot 5}=\frac{a_{1}}{6!} \\
a_{3} & =\frac{a_{1}}{3 \cdot 2}=\frac{a_{1}}{3!} \quad a_{5}=\frac{a_{3}}{5 \cdot 4}=\frac{a_{5}}{5 \cdot 4 \cdot 3 \cdot 2}=\frac{a_{1}}{5!} \\
a_{2 k} & =\frac{a_{0}}{(2 k)!} \\
y & =\sum_{k=0}^{\infty \cdot 6}=\frac{a_{2 k+1}}{7!}=\frac{a_{1}}{(2 k+1)!} \\
& =\sum_{k=0}^{\infty} x^{k} \\
& =a_{2 k} x^{2 k}+\sum_{k=0}^{\infty} a_{2 k+1}^{\infty} x^{2 k+1} \\
& =a_{k=0}^{\infty} x^{2 k}+a_{1} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)!} x^{2 k+1} \\
& =a_{0} \cosh x+a_{1} \sinh x .
\end{aligned}
$$

4. Repeat with $y^{\prime \prime}-y=x^{2}$.

Same as above except

$$
\begin{aligned}
1 & =a_{4}(4)(3)-a_{2} \\
a_{4} & =\frac{a_{2}+1}{(4)(3)}=\frac{\frac{a_{0}}{2}+1}{3 \cdot 4}=\frac{a_{0}+2}{4!} \\
a_{6} & =\frac{a_{4}}{6 \cdot 5}=\frac{a_{0}+2}{6!} \\
a_{2 k} & =\frac{a_{0}+2}{(2 k)!}, \quad k \geq 2 \\
a_{2} & =\frac{a_{0}}{2!}=\frac{a_{0}+2}{2!}-1 \\
a_{0} & =\frac{a_{0}+2}{0!}-2 \\
y & =\sum_{k=0}^{\infty} a_{k} x^{k} \\
& =\sum_{k=0}^{\infty} a_{2 k} x^{2 k}+\sum_{k=0}^{\infty} a_{2 k+1} x^{2 k+1} \\
& =-2-x^{2}+\left(a_{0}+2\right) \sum_{k=0}^{\infty} \frac{1}{(2 k)!} x^{2 k}+a_{1} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)!} x^{2 k+1} \\
& =-2-x^{2}+\left(a_{0}+2\right) \cosh x+a_{1} \sinh x \\
& =c_{1} \cosh x+c_{2} \sinh x-x^{2}-2 .
\end{aligned}
$$

