Quiz 10

MATH 2300-001
October 28, 2008

1. $\sum_{k=1}^{\infty} \frac{\sqrt{k^{2}+\sin \left(\frac{1}{k}\right)}}{\tan ^{-1}\left(k^{5}+1\right)}$

$$
\lim _{k \rightarrow \infty} \frac{\sqrt{k^{2}+\sin \left(\frac{1}{k}\right)}}{\tan ^{-1}\left(k^{5}+1\right)}=\frac{\sqrt{\infty+0}}{\frac{\pi}{2}}=\infty \neq 0 .
$$

So, by the divergence test, the series diverges.
2. Suppose $\sum_{k=1}^{n} a_{k}=\frac{n-1}{n+1}$ for all n. Find a_{n} and $\sum_{k=1}^{\infty} a_{k}$.

$$
\begin{aligned}
a_{n}= & \sum_{k=1}^{n} a_{k}-\sum_{k=1}^{n-1} a_{k}=\frac{n-1}{n+1}-\frac{n-2}{n}=\frac{2}{n(n+1)} . \\
& \sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} \frac{n-1}{n+1}=1 .
\end{aligned}
$$

3. Does $\sum_{k=1}^{\infty} \frac{5+\cos (\pi k)}{k^{2 / 3}+k^{1 / 3}}$ converge or diverge? Why?

$$
\sum_{k=1}^{\infty} \frac{5+\cos (\pi k)}{k^{2 / 3}+k^{1 / 3}} \geq \sum_{k=1}^{\infty} \frac{5-1}{k^{2 / 3}+k^{2 / 3}}=\sum_{k=1}^{\infty} \frac{2}{k^{2 / 3}} .
$$

This is a divergent p-series, so the original series diverges by the Direct Comparison Test.
4. If $\sum a_{k}$ is a convergent series with positive terms, does $\sum \sin \left(a_{k}\right)$ converge? Does $\sum \cos \left(a_{k}\right)$? Why?
$\sum a_{k}$ Converges $\Rightarrow \lim _{k \rightarrow \infty} a_{k}=0 \Rightarrow \lim _{k \rightarrow \infty} \cos \left(a_{k}\right)=\cos (0)=1 \neq 0$. So, by the Divergence Test, $\sum \cos \left(a_{k}\right)$ diverges.
$\lim _{k \rightarrow \infty} \frac{\sin \left(a_{k}\right)}{a_{k}}=1$ since $a_{k} \rightarrow 0$. Since $\sum a_{k}$ converges, by Limit Comparison Test, $\sum^{a_{k}} \sin \left(a_{k}\right)$ converges.
5. Does $\sum_{k=1}^{\infty} \frac{k!}{e^{k^{2}}}$ converge or diverge? Why?
$\lim _{k \rightarrow \infty} \frac{(k+1)!}{e^{(k+1)^{2}}} \cdot \frac{e^{k^{2}}}{k!}=\lim _{k \rightarrow \infty} \frac{k+1}{e^{(k+1)^{2}-k^{2}}}=\lim _{k \rightarrow \infty} \frac{k+1}{e^{2 k+1}}=\lim _{x \rightarrow \infty} \frac{x+1}{e^{2 x+1}}=\lim _{x \rightarrow \infty} \frac{1}{2 e^{2 x+1}}=0$.
So, the series converges by the Ratio Test.

