
Matrix Representations of Linear Transformations and
Changes of Coordinates

0.1 Subspaces and Bases

0.1.1 Definitions

A subspace V of Rn is a subset of Rn that contains the zero element and is closed under addition
and scalar multiplication:

(1) 0 ∈ V
(2) u,v ∈ V =⇒ u + v ∈ V
(3) u ∈ V and k ∈ R =⇒ ku ∈ V

Equivalently, V is a subspace if au + bv ∈ V for all a, b ∈ R and u,v ∈ V . (You should try to prove
that this is an equivalent statement to the first.)

Example 0.1 Let V = {(t, 3t,−2t) | t ∈ R}. Then V is a subspace of R3:

(1) 0 ∈ V because we can take t = 0.

(2) If u,v ∈ V , then u = (s, 3s,−2s) and v = (t, 3t,−2t) for some real numbers s and t. But then

u + v = (s+ t, 3s+ 3t,−2s− 2t) = (s+ t, 3(s+ t),−2(s+ t)) = (t′, 3t′,−2t′) ∈ V

where t′ = s+ t ∈ R.

(3) If u ∈ V , then u = (t, 3t,−2t) for some t ∈ R, so if k ∈ R, then

ku = (kt, 3(kt),−2(kt)) = (t′, 3t′,−2t′) ∈ V

where t′ = kt ∈ R. �

Example 0.2 The unit circle S1 in R2 is not a subspace because it doesn’t contain 0 = (0, 0) and
because, for example, (1, 0) and (0, 1) lie in S but (1, 0) + (0, 1) = (1, 1) does not. Similarly, (1, 0)
lies in S but 2(1, 0) = (2, 0) does not. �

A linear combination of vectors v1, . . . ,vk ∈ Rn is the finite sum

a1v1 + · · ·+ akvk (0.1)

which is a vector in Rn (because Rn is a subspace of itself, right?). The ai ∈ R are called the
coefficients of the linear combination. If a1 = · · · = ak = 0, then the linear combination is said
to be trivial. In particular, considering the special case of 0 ∈ Rn, the zero vector, we note that 0
may always be represented as a linear combination of any vectors u1, . . . ,uk ∈ Rn,

0u1 + · · ·+ 0uk = 0

This representation is called the trivial representation of 0 by u1, . . . ,uk. If, on the other hand,
there are vectors u1, . . . ,uk ∈ Rn and scalars a1, . . . , an ∈ R such that

a1u1 + · · ·+ akuk = 0
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where at least one ai 6= 0, then that linear combination is called a nontrivial representation of
0. Using linear combinations we can generate subspaces, as follows. If S is a nonempty subset of
Rn, then the span of S is given by

span(S) := {v ∈ Rn | v is a linear combination of vectors in S} (0.2)

The span of the empty set, ∅, is by definition

span(∅) := {0} (0.3)

Remark 0.3 We showed in class that span(S) is always a subspace of Rn (well, we showed this for
S a finite collection of vectors S = {u1, . . . ,uk}, but you should check that it’s true for any S). �

Let V := span(S) be the subspace of Rn spanned by some S ⊆ Rn. Then S is said to generate or
span V , and to be a generating or spanning set for V . If V is already known to be a subspace,
then finding a spanning set S for V can be useful, because it is often easier to work with the smaller
spanning set than with the entire subspace V , for example if we are trying to understand the behavior
of linear transformations on V .

Example 0.4 Let S be the unit circle in R3 which lies in the x-y plane. Then span(S) is the entire
x-y plane. �

Example 0.5 Let S = {(x, y, z) ∈ R3 | x = y = 0, 1 < z < 3}. Then span(S) is the z-axis. �

A nonempty subset S of a vector space Rn is said to be linearly independent if, taking any finite
number of distinct vectors u1, . . . ,uk ∈ S, we have for all a1, . . . , ak ∈ R that

a1u1 + a2u2 + · · ·+ akuk = 0 =⇒ a1 = · · · = an = 0

That is S is linearly independent if the only representation of 0 ∈ Rn by vectors in S is the trivial one.
In this case, the vectors u1, . . . ,uk themselves are also said to be linearly independent. Otherwise,
if there is at least one nontrivial representation of 0 by vectors in S, then S is said to be linearly
dependent.

Example 0.6 The vectors u = (1, 2) and v = (0,−1) in R2 are linearly independent, because if

au + bv = 0

that is
a(1, 2) + b(0,−1) = (0, 0)

then (a, 2a− b) = (0, 0), which gives a system of equations:

a = 0

2a− b = 0
or

[
1 0
2 −1

] [
a
b

]
=

[
0
0

]

But the matrix

[
1 0
2 −1

]
is invertible, in fact it is its own inverse, so that left-multiplying both sides

by it gives [
a
b

]
=

[
1 0
0 1

] [
a
b

]
=

[
1 0
2 −1

]2 [
a
b

]
=

[
1 0
2 −1

] [
0
0

]
=

[
0
0

]
which means a = b = 0. �
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Example 0.7 The vectors (1, 2, 3), (4, 5, 6), (7, 8, 9) ∈ R3 are not linearly independent because

1(1, 2, 3)− 2(4, 5, 6) + 1(7, 8, 9) = (0, 0, 0)

That is, we have found a = 1, b = −2 and c = 1, not all of which are zero, such that a(1, 2, 3) +
b(4, 5, 6) + c(7, 8, 9) = (0, 0, 0). �

Given ∅ 6= S ⊆ V , a nonzero vector v ∈ S is said to be an essentially unique linear combination
of the vectors in S if, up to order of terms, there is one and only one way to express v as a linear
combination of u1, . . . ,uk ∈ S. That is, if there are a1, . . . , an, b1, . . . , b` ∈ R\{0} and distinct
u1, . . . ,uk ∈ S and distinct v1, . . . ,v` ∈ S distinct, then, re-indexing the bis if necessary,

v = a1u1 + · · ·+ anuk

= b1v1 + · · ·+ b`v`

}
=⇒ k = ` and

{
ai = bi

ui = vi

}
for all i = 1, . . . , k

If V is a subspace of Rn, then a subset β of V is called a basis for V if it is linearly independent
and spans V . We also say that the vectors of β form a basis for V . Equivalently, as explained
in Theorem 0.11 below, β is a basis if every nonzero vector v ∈ V is an essentially unique linear
combination of vectors in β.

Remark 0.8 In the context of inner product spaces V of inifinite dimension, there is a difference
between a vector space basis, the Hamel basis of V , and an orthonormal basis for V , the Hilbert
basis for V , because though the two always exist, they are not always equal unless dim(V ) <∞. �

The dimension of a subspace V of Rn is the cardinality of any basis for V , i.e. the number of
elements in β (which may in principle be infinite), and is denoted dim(V ). This is a well defined
concept, by Theorem 0.13 below, since all bases have the same size. V is finite-dimensional if it is
the zero vector space {0} or if it has a basis of finite cardinality. Otherwise, if it’s basis has infinite
cardinality, it is called infinite-dimensional. In the former case, dim(V ) = |β| = k <∞ for some
n ∈ N, and V is said to be k-dimensional, while in the latter case, dim(V ) = |β| = κ, where κ is a
cardinal number, and V is said to be κ-dimensional.

Remark 0.9 Bases are not unique. For example, β = {e1, e2} and γ = {(1, 1), (1, 0)} are both
bases for R2. �

If V is finite-dimensional, say of dimension n, then an ordered basis for V a finite sequence or
n-tuple (v1, . . . ,vn) of linearly independent vectors v1, . . . ,vn ∈ V such that {v1, . . . ,vn} is a basis
for V . If V is infinite-dimensional but with a countable basis, then an ordered basis is a sequence
(vn)n∈N such that the set {vn | n ∈ N} is a basis for V .

3



0.1.2 Properties of Bases

Theorem 0.10 Vectors v1, . . . ,vk ∈ Rn are linearly independent iff no vi is a linear combination
of the other vj.

Proof: Let v1, . . . ,vk ∈ Rn be linearly independent and suppose that vk = c1v1 + · · ·+ ck−1vk−1
(we may suppose vk is a linear combination of the other vj , else we can simply re-index so that this
is the case). Then

c1v1 + · · ·+ ck−1vk−1 + (−1)vk = 0

But this contradicts linear independence, since −1 6= 0. Hence vk cannot be a linear combination
of the other vk. By re-indexing the vi we can conclude this for all vi.

Conversely, suppose v1, . . . ,vk are linearly dependent, i.e. there are scalars c1, . . . , ck ∈ R not all
zero such that

c1v1 + · · ·+ ckvk = 0

Say ci 6= 0. Then,

vi =

(
−c1
ci

)
v1 + · · ·+

(
−ci−1

ci

)
vi−1 +

(
−ci+1

ci

)
vi+1 + · · ·+

(
−ck
ci

)
vk

so that vi is a linear combination of the other vj . This is the contrapositive of the equivalent
statement, “If no vi is a linear combination of the other vj , then v1, . . . ,vk are linearly independent.”

�

Theorem 0.11 Let V be a subspace of Rn. Then a collection β = {v1, . . . ,vk} is a basis for V iff
every vector v ∈ V has an essentially unique expression as a linear combination of the basis vectors
vi.

Proof: Suppose β is a basis and suppose that v has two representations as a linear combination of
the vi:

v = c1v1 + · · ·+ ckvk

= d1v1 + · · ·+ dkvk

Then,
0 = v − v = (c1 − d1)v1 + · · ·+ (ck − dk)vk

so by linear independence we must have c1 − d1 = · · · = ck − dk = 0, or ci = di for all i, and so v
has only one expression as a linear combination of basis vectors, up to order of the vi.

Conversely, suppose every v ∈ V has an essentially unique expression as a linear combination of the
vi. Then clearly β is a spanning set for V , and moreover the vi are linearly independent: for note,
since 0v1 + · · ·+ 0vk = 0, by uniqueness of representations we must have c1v1 + · · ·+ ckvk = 0 =⇒
c1 = · · · = ck = 0. Thus β is a basis. �
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Theorem 0.12 (Replacement Theorem) Let V be a subspace of Rn and let v1, . . . ,vp and
w1, . . . ,wq be vectors in V . If v1, . . . ,vp are linearly independent and w1, . . . ,wq span V , then
p ≤ q.

Proof: Let A = [ w1 · · · wq ] ∈ Rn×q be the matrix whose columns are the wj and let B =
[ v1 · · · vp ] ∈ Rn×p be the matrix whose columns are the vk. Then note that

{v1, . . . ,vp} ⊆ V = span(w1, . . . ,wq) = imA

Thus, there exist u1, . . . ,up ∈ Rq such that Aui = vi. Consequently,

B = [ v1 · · · vp ] = [Au1 · · · up ] = A[ u1 · · · up ] = AC

where C = [u1 · · · up ] ∈ Rq×p. Now, since v1 · · · vp are linearly independent, c1v1+ · · ·+cpvp = 0
implies all ci = 0, i.e. Bc = 0 implies c = 0, or kerB = {0}. But you will notice that kerC ⊆ kerB,
since if x ∈ kerC, then the fact that B = AC implies Bx = (AC)x = A(Cx) = A0 = 0, or
x ∈ kerC. Since kerB = {0}, this means that kerC = {0} as well. But then C must have at least

as many rows as columns, i.e. p ≤ q, because rref(C) must have the form

[
Ip
O

]
, possibly with no O

submatrix, but at least with Ip in the top portion. �

Theorem 0.13 Let V be a subspace for Rn. Then all bases for V have the same size.

Proof: By the previous theorem two bases β = {v1, . . . ,vp} and γ = {w1, . . . ,wq} for V both span
V and both are linearly independent, so we have p ≤ q and p ≥ q. Therefore p = q. �

Corollary 0.14 All bases for Rn have n vectors.

Proof: Notice that ρ = {e1, · · · , en} forms a basis for Rn: first, the elementary vectors ei span Rn,
since if x = (a1, . . . , an) ∈ Rn, then

x = (a1, . . . , an) = a1(1, 0, . . . , 0) + a2(0, 1, 0, . . . , 0) + · · ·+ an(0, . . . , 0, 1)

= a1e1 + a2e2 + · · ·+ anen ∈ span(e1, . . . , en)

Also, e1, . . . , en are linearly independent, for if

0 = c1e1 + · · ·+ cnen =
[

e1 · · · en

]c1...
cn

 = Inc

then c = (c1, . . . , cn) ∈ ker In = {0}, so c1 = · · · = cn = 0. Since |ρ| = n, all bases β for Rn satisfy
|β| = n be the previous theorem. �

Theorem 0.15 (Characterizations of Bases) If V is a subspace of Rn and dim(V ) = k, then

(1) There are at most k linearly independent vectors in V . Consequently, a basis is a maximal
linearly independent set in V .

(2) At least k vectors are needed to span V . Thus a basis is a minimal spanning set.

(3) If k vectors in V are linearly independent, then they form a basis for V .

(4) If k vectors span V , then they form a basis for V .
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Proof: (1) If v1, . . . ,vp ∈ V are linearly independent and w1, . . . ,wk ∈ V form a basis for V , then
p ≤ k by the Replacement Theorem. (2) If v1, . . . ,vp ∈ V span V and w1, . . . ,wk ∈ V form a
basis for V then again we must have k ≤ p by the Replacement Theorem. (3) If v1, . . . ,vk ∈ V are
linearly independent, we must show they also span V . Pick v ∈ V and note that by (1) the vectors
v1, . . . ,vk,v ∈ V are linearly dependent, because there are k + 1 of them. (4) If v1, . . . ,vk,v ∈ V
span V but are not linearly independent, then say vk ∈ span(v1, . . . ,vk−1). But in this case
V = span(v1, . . . ,vk−1), contradicting (2). �

Theorem 0.16 If A ∈ Rm×n, then dim(imA) = rankA.

Proof: This follows from Theorem 0.15 in Systems of Linear Equations, since if B = rref(A), then
rankA = rankB =# of columns of the form ei in B =# of nonredundant vectors in A. �

Theorem 0.17 (Rank-Nullity Theorem) If A ∈ Rm×n, then

dim(kerA) + dim(imA) = n (0.4)

or
nullA+ rankA = n (0.5)

Proof: If B = rref(A), then dim(kerA) = n−# of leading 1s= n− rankA. �
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0.2 Coordinate Representations of Vectors and Matrix Representations
of Linear Transformations

0.2.1 Definitions

If β = (v1, . . . ,vk) is an ordered basis for a subspace V of Rn, then we know that for any vector
v ∈ V there are unique scalars a1, . . . , ak ∈ R such that

v = a1v1 + · · ·+ akvk

The coordinate vector of v ∈ Rn with respect to, or relative to, β is defined to be the (column)
vector in Rk consisting of the scalars ai:

[x]β :=


a1
a2
...
ak

 (0.6)

and the coordinate map, also called the standard representation of V with respect to β,

φβ : V → Rk (0.7)

is given by
φβ(x) = [x]β (0.8)

Example 0.18 Let v = (5, 7, 9) ∈ R3 and let β = (v1,v2) be the ordered basis for V = span(v1,v2),
where v1 = (1, 1, 1) and v2 = (1, 2, 3). Can you express v as a linear combination of v1 and v2? In
other words, does v lie in V ? If so, find [v]β.

Solution: To find out whether v lies in V , we must see if there are scalars a, b ∈ R such that
v = av1 + bv2. Note, that if we treat v and the vi as column vectors we get a matrix equation:

v = av1 + bv2 = [v1 v2]

[
a
b

]
or 5

7
9

 =

1 1
1 2
1 3

[a
b

]
This is a system of equations, Ax = b with

A =

1 1
1 2
1 3

 , x =

[
a
b

]
, b =

5
7
9


Well, the agmented matrix [A|b] reduces to rref([A|b]) as follows:1 1 5

1 2 7
1 3 9

 −→

1 0 3
0 1 2
0 0 0


This means that a = 3 and b = 2, so that

v = 3v1 + 2v2

and v lies in V , and moreover

[v]β =

[
3
2

]
�
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In general, if β = (v1, . . . ,vk) is a basis for a subspace V of Rn and v ∈ V , then the coordinate map
will give us a matrix equation if we treat all the vectors v,v1, . . . ,vk as column vectors:

v = a1v1 + · · ·+ akvk = [v1 · · · vk]

a1...
ak


or

v = B[v]β

where B = [v1 · · · vk], the n × k matrix with columns vj . If V = Rn, then B will be an n × n
matrix whose columns are linearly independent. Therefore, imB = Rn, so that by the Rank-Nullity
Theorem kerB = {0}, which means B represents an injective and surjective linear transformation,
and is therefore invertible. In this case, we can solve for [v]β rather easily:

[v]β = B−1v (0.9)

Let V and W be finite dimensional subspaces of Rn and Rm, respectively, with ordered bases
β = (v1, . . . ,vk) and γ = (w1, . . . ,w`), respectively. If there exist (and there do exist) unique
scalars aij ∈ R such that

T (vj) =
∑̀
i=1

aijwi for j = 1, . . . , k (0.10)

then the matrix representation of a linear transformation T ∈ L(V,W ) in the ordered
bases β and γ is the `× k matrix A defined by Aij = aij ,

A = [T ]γβ :=
[

[T (v1)]γ [T (v2)]γ · · · [T (vk)]γ

]

=



a11
a21
...
a`1



a12
a22
...
a`2

 · · ·

a1k
a2k

...
a`k


 =

a11 · · · a1k
...

. . .
...

a`1 · · · a`k


Note that [T (v)]γ = ϕγ(T (v)) = (ϕγ ◦ T )(v).

Notation 0.19 If V = W and β = γ, we write [T ]β instead of [T ]ββ. �

Example 0.20 Let T ∈ L(R2,R3) be given by T (x, y) = (x + y, 2x − y, 3x + 5y). In terms of
matrices and column vectors T behaves as follows:

T

[
x
y

]
=

1 1
2 −1
3 5

[x
y

]

But this matrix, call it A, is actually the representation of T with respect to the standard ordered
bases ρ2 = (e1, e2) and ρ3 = (e1, e2, 3), that A = [T ]ρ3ρ2 . What if we were to choose different bases
for R2 and R3? Say,

β =
(
(1, 1), (0,−1)

)
, γ =

(
(1, 1, 1), (1, 0, 1), (0, 0, 1)

)
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How would T look with respect to these bases? Let us first find the coordinate representations of
T (1, 1) and T (0,−1) with resepct to γ: Note, T (1, 1) = (2, 1, 8) and T (0,−1) = (−1, 1,−5), and to
find [(2, 1, 8)]γ and [(−1, 1,−5)] we have to solve the equations:1 1 0

1 0 0
1 1 1

2
1
8


γ

=

2
1
8

 and

1 1 0
1 0 0
1 1 1

−1
1
−5


γ

=

−1
1
−5



If B is the matrix

1 1 0
1 0 0
1 1 1

, then B−1 =

 0 1 0
1 −1 0
−1 0 1

, so

2
1
8


γ

=

 0 1 0
1 −1 0
−1 0 1

2
1
8

 =

1
1
6

 and

−1
1
−5


γ

=

 0 1 0
1 −1 0
−1 0 1

−1
1
−5

 =

 1
−2
−4


Let us verify this:

1(1, 1, 1) + 1(1, 0, 1) + 6(0, 0, 1) = (2, 1, 8) and 1(1, 1, 1)− 2(1, 0, 1)− 4(0, 0, 1) = (−1, 1,−5)

so indeed we have found [T (1, 1)]γ and [T (0,−1)]γ , and therefore

[T ]γβ :=
[

[T (1, 1)]γ [T (0,−1)]γ

]
=

1
1
6

  1
−2
−4

 =

1 1
1 −2
6 −4

 �

0.2.2 Properties of Coordinate and Matrix Representations

Theorem 0.21 (Linearity of Coordinates) Let β be a basis for a subspace V of Rn. Then, for
all x,y ∈ V and all k ∈ R we have

(1) [x + y]β = [x]β + [y]β

(2) [kx]β = k[x]β

Proof: (1) On the one hand, x + y = B[x + y]β , and on the other x = B[x]β and y = B[y]β , so
x + y = B[x]β +B[y]β . Thus,

B[x + y]β = x + y = B[x]β +B[y]β = B([x]β + [y]β)

so that, subtracting the right hand side from both sides, we get

B
(
[x + y]β − ([x]β + [y]β)

)
= 0

Now, B’s columns are basis vectors, so they are linearly independent, which means Bx = 0 has only
the trivial solution, because if β = (v1, . . . ,vk) and x = (x1, . . . , xk), then 0 = x1v1 + · · ·+ xkvk =
Bx =⇒ x1 = · · · = xk = 0, or x = 0. But this means the kernel of B is {0}, so that

[x + y]β − ([x]β + [y]β) = 0

or
[x + y]β = [x]β + [y]β

The proof of (2) follows even more straighforwardly: First, note that if [x]β = [a1 · · · ak]T , then
x = a1v1 + · · ·+ akvk, so that kx = ka1v1 + · · ·+ kakvk, and therefore

[kx]β = [ka1 · · · kan]T = k[a1 · · · ak]T = k[x]β �
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Corollary 0.22 The coordinate maps ϕβ are linear, i.e. ϕβ ∈ L(V,Rk), and further they are
isomorphisms, that is they are invertible, and so ϕβ ∈ GL(V,Rk).

Proof: Linearity was shown in the previous theorem. To see that ϕβ is an isomorphism, note
first that ϕβ takes bases to bases: if β = (v1, . . . ,vk) is a basis for V , then ϕβ(vi) = ei, since
vi = 0v1 + · · · + 1vi + · · · + 0vk. Thus, it takes β to the standard basis ρk = (e1, . . . , ek) for Rk.
Consequently, it is surjective, because if x = (x1, . . . , xk) ∈ Rk, then

x = x1e1 + · · ·+ xkek = x1ϕβ(v1) + · · ·+ xkϕβ(vk) = ϕβ(x1v1 + · · ·+ xkvk)

If we let v = x1v1 + · · ·+xkvk, then we see that v ∈ V satisfies ϕβ(v) = x. But ϕβ is also injective:
if v ∈ kerϕβ , then v = a1v1 + · · ·+ akvk, so that

0 = ϕβ(v) = ϕβ(a1v1 + · · ·+ akvk) = a1ϕβ(v1) + · · ·+ akϕβ(vk) = a1e1 + · · ·+ akek

By the linear independence of the ei we must have a1 = · · · = ak = 0, and so v = 0. Thus, ϕβ is
also injective. �

Theorem 0.23 Let V and W be finite-dimensional subspaces of Rn having ordered bases β =
(v1, . . . ,vk) and γ = (w1, . . . ,w`), respectively, and let T ∈ L(V,W ). Then for all v ∈ V we have

[T (v)]γ = [T ]γβ [v]β (0.11)

In other words, if D = [T ]γβ is the matrix representation of T in β and γ coordinates, with TD ∈
L(Rk,R`) the corresponding matrix multiplication map, if A = [T ]ρ`ρk is the matrix representation

of T in standard coordinates, with corresponding TA ∈ L(Rk,R`), and if φβ ∈ GL(V,Rk) and
φγ ∈ GL(W,R`) are the respective coordinate maps, with matrix representations B−1 and C−1,
respectively, where B =

[
v1 · · · vk

]
and C =

[
w1 · · · w`

]
, then

φγ ◦ T = TD ◦ φβ or, in terms of matrices, C−1A = DB−1 (0.12)

and the following diagrams commute:

V
T - W

Rk

φβ
?

TD
- R`

φγ
?

or, in terms of matrices,

V
A- W

Rk

B−1

?

D
- R`

C−1

?

Proof: If β = (v1, . . . ,vk) is an odered basis for V and γ = (w1, . . . ,w`) is an ordered basis for W ,
then let

[T ]γβ =
[
[T (v1)]γ · · · [T (vk)]γ

]
=


a11...
a`1

 · · ·
a1kn...
a`k


 =

a11 · · · a1k
...

. . .
...

a`1 · · · a`k


Now, for all u ∈ V there are unique b1, . . . , bn ∈ R such that u = b1v1 + · · ·+ bkvk. Therefore,

T (u) = T (b1v1 + · · ·+ bkvk)

= b1T (v1) + · · ·+ bkT (vk)

10



so that by the linearity of ϕβ ,

[T (u)]γ = φγ
(
T (u)

)
= φγ

(
b1T (v1) + · · ·+ bkT (vk)

)
= b1φγ

(
T (v1)

)
+ · · ·+ bkφγ

(
T (vk)

)
= b1[T (v1)]γ + · · ·+ bk[T (vk)]γ

=
[

[T (v1)]γ · · · [T (vk)]γ

]b1...
bk


= [T ]γβ [u]β

This shows that φγ ◦T = TD ◦φβ , since [T (u)]γ = (ϕγ ◦T )(u) and [T ]γβ [u]β = (TD ◦ϕβ)(u). Finally,

since ϕβ(x) = B−1x and ϕγ(y) = C−1y, we have the equivalent statement C−1A = DB−1. �

Remark 0.24 Two square matrices A,B ∈ Rn×n are said to be similar, denoted A ∼ B, if there
exists an invertible matrix P ∈ GL(n,R) such that

A = PBP−1

Similarity is an equivalence relation (it is reflexive, symmetric and transitive):

(1) (reflexivity) A ∼ A because we can take P = In, so that A = InAI
−1
n

(2) (symmetry) If A ∼ B, then there is an invertible P such that A = PBP−1. But then left-
multiplying by P−1 and right-multiplying P gives P−1AP = B, so since P−1 is invertible, we
have B ∼ A.

(3) (transitivity) If A ∼ B and B ∼ C, then there are invertible matrices P and Q such that
A = PBP−1 and B = QCQ−1. Plugging the second into the first gives

A = PBP−1 = P (QCQ−1)P−1 = (PQ)C(Q−1P−1) = (PQ)C(PQ)−1

so since PQ is invertible, with inverse Q−1P−1, A ∼ C.

In the previous theorem, if we take W = V and γ = β, we’ll have B = C, so that

B−1A = DB−1, or A = BDB−1

which shows that A ∼ D, i.e.
[T ]ρ ∼ [T ]β

Since similarity is an equivalence relation, if β and γ are any two bases for V , then

[T ]β ∼ [T ]ρ and [T ]ρ ∼ [T ]γ =⇒ [T ]β ∼ [T ]γ

This demonstrates that if we represent a linear transformation T ∈ L(V, V ) with respect to two
different bases, then the corresponding matrices are similar

[T ]β ∼ [T ]γ

Indeed, the invertible matrix P is B−1C, because [T ]β = B−1[T ]ρB and [T ]ρ = C[T ]γC
−1, so that

[T ]β = B−1[T ]ρB = B−1C[T ]γC
−1B = (B−1C)[T ]γ(B−1C)−1

We will show below that the converse is also true: if two matrices are similar, then they represent
the same linear transformation, possibly with respect to different bases! �
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Theorem 0.25 If V,W,Z are finite-dimensional subspaces of Rn, Rm and Rp, respectively, with
ordered bases α, β and γ, respectively, and if T ∈ L(V,W ) and U ∈ L(W,Z), then

[U ◦ T ]γα = [U ]γβ [T ]βα (0.13)

Proof: By the previous two theorems we have

[U ◦ T ]γα =
[
[(U ◦ T )(v1)]γ · · · [(U ◦ T )(vk)]γ

]
=

[
[U(T (v1))]γ · · · [U(T (vk))]γ

]
=

[
[U ]γβ [T (v1)]β · · · [U ]γβ [T (vk)]β

]
= [U ]γβ

[
[T (v1)]β · · · [T (vk)]β

]
= [U ]γβ [T ]βα

which completes the proof. �

Corollary 0.26 If V is an k-dimensional subspace of Rn with an ordered basis β and if I ∈ L(V, V )
is the identity operator, then [I]β = Ik ∈ Rk×k.

Proof: Given any T ∈ L(V ), we have T = I ◦ T , so that [T ]β = [I ◦ T ]β = [I]β [T ]β , and similarly
[T ]β = [T ]β [I]β . Hence, taking T = I we will have [I]2β = [I]β . Note also that [I]−1β = [I]β , because

[I]−1β [I]β = [I]β [I]−1β = [I ◦ I−1]β = [I]β . But then [I]β = In, because any A ∈ Rn×n that is

invertible and satisfies A2 = A will satisfy A = In:

A = AIn = A(AA−1) = (AA)A−1 = A2A−1 = AA−1 = Ik

An alternative proof follows directly from the definition, since I(vi) = vi, so that [I(vi)]β = ei,
whence [I]β =

[
[I(v1)]β · · · [I(vk)]β

]
= [e1 · · · ek] = Ik. �

Theorem 0.27 If V and W are subspaces of Rn with ordered bases β = (b1, . . . ,bk) and γ =
(c1, . . . , c`), respectively, then the function

Φ : L(V,W )→ R`×k (0.14)

Φ(T ) = [T ]γβ (0.15)

is an isomorphism, that is Φ ∈ GL
(
L(V,W ), R`×k

)
, and consequently the space of linear transfor-

mations is isomorphic to the space of all `× k matrices:

L(V,W ) ∼= R`×k (0.16)

Proof: First, Φ is linear: there exist scalars rij , sij ∈ R, for i = 1, . . . , ` and j = 1, . . . , k, such that
for any T ∈ L(V,W ) we have

T (b1) = r11c1 + · · ·+ r`1c`

...

T (bk) = r1kc1 + · · ·+ r`kc`

and

U(b1) = s11c1 + · · ·+ s`1c`

...

U(bk) = s1kc1 + · · ·+ s`kc`

Hence, for all s, t ∈ R and j = 1, . . . , n we have

(sT + tU)(bj) = sT (bj) + tU(bj) = s
∑̀
i=1

rijci + t
∑̀
i=1

sijci =
∑̀
i=1

(srij + tsij)ci

12



As a consequence of this and the rules of matrix addition and scalar multiplication we have

Φ(sT + tU) = [sT + tU ]γβ

=

sr11 + ts11 · · · sr1k + ts1k
...

. . .
...

sr`1 + ts`1 · · · sr`k + ts`k


= s

r11 · · · r1k
...

. . .
...

r`1 · · · r`k

+ t

s11 · · · s1k
...

. . .
...

s`1 · · · s`k


= s[T ]γβ + t[U ]γβ
= sΦ(T ) + tΦ(U)

Moreover, Φ is bijective, since for all A ∈ R`×k there is a unique linear transformation T ∈ L(V,W )
such that Φ(T ) = A, because there exists a unique T ∈ L(V,W ) such that

T (bj) = A1jc1 + · · ·+Akjc` for j = 1, . . . , k

This makes Φ onto, and also 1-1 because ker(Φ) = {T0}, the zero operator, because for O ∈ R`×k
there is only T0 ∈ L(V,W ) satisying Φ(T0) = O, because

T (bj) = 0c1 + · · ·+ 0c` = 0 for j = 1, . . . , k

defines a unique transformation, T0. �

Theorem 0.28 Let V and W be subspaces of Rn of the same dimension k, with ordered bases β =
(b1, . . . ,bk) and γ = (c1, . . . , ck), respectively, and let T ∈ L(V,W ). Then T is an isomporhpism
iff [T ]γβ is invertible, that is T ∈ GL(V,W ), iff [T ]γβ ∈ GL(k,R). In this case

[T−1]βγ =
(
[T ]γβ

)−1
(0.17)

Proof: If T ∈ GL(V,W ) and dim(V ) = dim(W ) = k, then T−1 ∈ L(W,V ), and T ◦ T−1 = IW and
T−1 ◦ T = IV , so that by Theorem 0.25 and Corollary 0.26 we have

[T ]γβ [T−1]βγ = [T ◦ T−1]γ = [IW ]γ = In = [IV ]β = [T−1 ◦ T ]β = [T−1]βγ [T ]γβ

so that [T ]γβ is invertibe with inverse [T−1]βγ , and by the uniqueness of the multiplicative inverse in

Rk×k, which follows from the uniqueness of T−1A ∈ L(Rk,Rk), we have

[T−1]βγ =
(
[T ]γβ

)−1
Conversely, if A = [T ]γβ is invertible, there is a n × n matrix B such that AB = BA = In. Define

U ∈ L(W,V ) on the basis elements as follows, U(cj) = vj =
∑n
i=1Bijbj , and extend U by linearity.

Then B = [U ]βγ . To show that U = T−1, note that

[U ◦ T ]β = [U ]βγ [T ]γβ = BA = In = [IV ]β and [T ◦ U ]γ = [T ]γβ [U ]βγ = AB = In = [IW ]γ

But since Φ ∈ GL
(
L(V,W ),Rk×k

)
is an isomorphism, and therefore 1-1, we must have that

U ◦ T = IV and T ◦ U = IW

By the uniqueness of the inverse, however, U = T−1, and T is an isomorphism. �
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0.3 Change of Coordinates

0.3.1 Definitions

We now define the change of coordinates, or change of basis, operator. If V is a k-dimensional
subspace of Rn and β = (b1, . . . ,bk) and γ = (c1, . . . , ck) are two ordered bases for V , then the
coordinate maps φβ , φγ ∈ GL(V,Rk), which are isomorphisms by Corollary 0.22 above, may be
used to define a change of coordinates operator φβ,γ ∈ GL(Rk,Rk) changing β coordinates into γ
coordinates, that is having the property

φβ,γ([v]β) = [v]γ (0.18)

We define the operator as follows:
φβ,γ := φγ ◦ φ−1β (0.19)

The relationship between these three functions is illustrated in the following commutative diagram:

Rk
φγ ◦ φ−1β - Rk

V
φγ

-

φβ

�

As we will see below, the change of coordinates operator has a matrix representation

Mβ,γ = [φβ,γ ]ρ = [φγ ]ρβ =
[

[b1]γ [b2]γ · · · [bn]γ

]
(0.20)

0.3.2 Properties of Change-of-Coordinate Maps and Matrices

Theorem 0.29 (Change of Coordinate Matrix) Let V be a k-dimensional subspace of Rn and
let β = (b1, . . . ,bk) and γ = (c1, . . . , ck) be two ordered bases for V . Since φβ and φγ are isomor-
phisms, the following diagram commutes,

Rk
φγ ◦ φ−1β - Rk

V
φγ

-

φβ

�

and the change of basis operator φβ,γ := φγ ◦ φ−1β ∈ L(Rk,Rk), changing β coordinates into γ
coordinates, is an isomorphism. It’s matrix representation,

Mβ,γ = [φβ,γ ]ρ ∈ Rk×k (0.21)

where ρ = (e1, . . . , en) is the standard ordered basis for Rk, is called the change of coordinate
matrix, and it satisfies the following conditions:

1. Mβ,γ = [φβ,γ ]ρ

= [φγ ]ρβ

=
[
[b1]γ [b2]γ · · · [bk]γ

]
2. [v]γ = Mβ,γ [v]β , ∀v ∈ V
3. Mβ,γ is invertible and M−1β,γ = Mγ,β = [φβ ]ργ

14



Proof: The first point is shown as follows:

Mβ,γ = [φβ,γ ]ρ =
[
φβ,γ(e1) φβ,γ(e2) · · · φβ,γ(ek)

]
=

[
(φγ ◦ φ−1β )(e1) (φγ ◦ φ−1β )(e2) · · · (φγ ◦ φ−1β )(ek)

]
=

[
(φγ ◦ φ−1β )([b1]β) (φγ ◦ φ−1β )([b2]β) · · · (φγ ◦ φ−1β )([bk]β)

]
=

[
φγ(b1) φγ(b2) · · · φγ(bk)

]
=

[
[b1]γ [b2]γ · · · [bn]γ

]
= [φγ ]β

or, alternatively, by Theorem 0.25 and Theorem 0.28 we have that

Mβ,γ = [φβ,γ ]ρ = [φγ ◦ φ−1β ]ρ = [φγ ]ρβ [φ−1β ]βρ = [φγ ]ργ([φβ ]ρβ)−1 = [φγ ]ρβI
−1
n = [φγ ]ρβIn = [φγ ]ρβ

The second point follows from Theorem 0.23, since

φγ(v) = (φγ ◦ I)(v) = (φγ ◦ (φ−1β ◦ φβ))(v) = ((φγ ◦ φ−1β ) ◦ φβ)(v)

implies that

[v]γ = [φγ(v)]ρ = [((φγ ◦ φ−1β ) ◦ φβ)(v)]ρ = [φγ ◦ φ−1β ]ρ[φβ(v)]ρ = [φβ,γ ]ρ[v]β = Mβ,γ [v]β

And the last point follows from the fact that φβ and φγ are isomorphism, so that φβ,γ is an isomor-
phism, and hence φ−1β,γ ∈ L(Rk) is an isomorphism, and because the diagram above commutes we
must have

φ−1β,γ = (φγ ◦ φ−1β )−1 = φβ ◦ φ−1γ = φβ,γ

so that by (1)
M−1β,γ = [φ−1β,γ ]ρ = [φγ,β ]ρ = Mγ,β

or alternatively by Theorem 0.28

M−1β,γ = ([φβ,γ ]ρ)
−1 = [φ−1β,γ ]ρ = [φγ,β ]ρ = [φβ ]ργ = Mγ,β �

Corollary 0.30 (Change of Basis) Let V and W be subspaces of Rn and let (β, γ) and (β′, γ′)
be pairs of ordered bases for V and W , respectively. If T ∈ L(V,W ), then

[T ]γ
′

β′ = Mγ,γ′ [T ]γβMβ′,β (0.22)

= Mγ,γ′ [T ]γβM
−1
β,β′ (0.23)

where Mγ,γ′ and Mβ′,β are change of coordinate matrices. That is, the following diagram commutes

Rk
TA - Rk

Rk
TA′
-

φβ,β′

-

Rk

φγ′,γ

�

V

φβ′
6

T
-

φβ

�

W

φγ′
6

φγ

-

15



Proof: This follows from the fact that if β = (b1, . . . ,bk), β′ = (b′1, . . . ,b
′
k), γ = (c1, . . . , c`),

γ = (c′1, . . . , c
′
`), then for each i = 1, . . . , k we have

[T (b′i)]γ′ = [(φγ,γ′ ◦ T ◦ φ−1β,β′)(b
′
i)]γ′

so

[T ]γ
′

β′ = [φγ,γ′ ◦ T ◦ φ−1β,β′ ]
γ′

β′

= [φγ,γ′ ]ρm [T ]γβ [φ−1β,β′ ]ρn

= [φγ,γ′ ]ρm [T ]γβ([φβ,β′ ]ρn)−1

= Mγ,γ′ [T ]γβM
−1
β,β′

which completes the proof. �

Corollary 0.31 (Change of Basis for a Linear Operator) If V is a subspaces of Rn with or-
dered bases β and γ, and T ∈ L(V ), then

[T ]γ = Mβ,γ [T ]βM
−1
β,γ (0.24)

where Mβ,γ is the change of coordinates matrix. �

Corollary 0.32 If we are given any two of the following:

(1) A ∈ Rn invertible

(2) an ordered basis β for Rn

(3) an ordered basis γ for Rn

The third is uniquely determined by the equation A = Mβ,γ , where Mβ,γ is the change of coordinates
matrix of the previous theorem.

Proof: If we have A = Mβ,γ = [φβ ]γ =
[
[b1]γ [b2]γ · · · [bn]γ

]
, suppose we know A and γ. Then,

[bi]γ is given by A, so bi = Ai1c1 + · · ·+Aincn, so β is uniquely determined. If β and γ are given,

then by the previous theorem Mβ,γ is given by Mβ,γ =
[
[b1]γ [b2]γ · · · [bn]γ

]
. Lastly, if A and β

are given, then γ is given by the first case applied to A−1 = Mγ,β . �
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