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Abstract

We now step back from Rn and its standard coordinates σ =
(
e1, . . . , en

)
to consider what happens when vector properties alone are considered, without
explicit numerical realizations. This is the abstract vector space V . We then
re-introduce coordinates, but this time as an option, as a choice. If we choose to
work with real numbers R, then the choice can be expressed as a linear isomor-
phism ϕβ : V → Rn. If we choose the complex numbers then our choice would
be expressed as ϕβ : V → Cn. If we choose to work over a finite field Fp, then
our choice is ϕβ : V → Fnp .

This distinction between the vector space V and its field of numbers F (F =
R, C, Fp, etc.) is an important one, for in making it we both extend the range over
which many theorems apply, and simultaneously clarify the different roles played
by vectors as compared with numbers. Vectors and their linear transformations
are characterized by properties alone, conceptually cordoned off from numerics.
Numbers, on the other hand, are chosen, as clothing is chosen, to present the
vectors and transformations in a certain light, for certain occasions and purposes.
By this neat distinction we can understand which aspects depend on
properties, and which on numbers, and thereby gain in tools and techniques.
Rank and nullity, for example, depend almost entirely on properties, while the
various canonical forms of linear transformations depend to a much larger degree
on the field of numbers.

To see how the range over which linear algebra extends beyond Rn by this
process, take a look at function spaces. Examples such as the smooth functions
C∞(Rn) or distributions D(Rn) on Rn come readily to mind. Because certain of
their properties are manifestly vectorial, e.g. additivity and scalar multiplication,

f, g ∈ C∞(Rn), c ∈ R =⇒ f + g, cf ∈ C∞(Rn)

we can stop trying to ‘solve equations,’ like the heat equation,

∂2u

∂x21
+ · · ·+ ∂2u

∂x2n
=
∂u

∂t

and instead treat functions u ∈ C∞(Rn) as vectors and differentiation, e.g. P =∑n
j=1

∂2

∂x2
j
− ∂

∂t , as linear operators

P =

n∑
j=1

∂2

∂x2j
− ∂

∂t
∈ L

(
C∞(Rn)

)
The heat equation then becomes

Pu = 0
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Since the setting is similar to the familiar one of Rn, we naturally seek an analog
of the linear system Ax = 0: perhaps there is something like row-reduction for
Pu = 0, or perhaps there are eigenvalues and eigenvectors, a coordinate system
in which Pu =

∑∞
j=1 λjvj . Certainly, P has a certain rank and nullity, just like

A. Such observations lead directly to a vast reformulation of linear differential
equations in terms of linear algebra, called functional analysis, which has played
a tremendous role in the mathematical physics of quantum mechanics.

Yet even the study of Rn itself, and its companion matrix algebra, benefit
from this distinction. The Rank-Nullity Theorem is one example, which we can
pluck right out of the conceptual structure developed here. But there is more: the
distinction between coordinate-free Rn and its coordinatized realizations give us
greater freedom of motion, even with concrete objects such as matrices A. We can
diagonalize them or put them into other canonical forms, as the occasion requires.
From here it is but a short step to quadratic forms, especially symmetric forms
(aka inner products or generalized dot products), which allows us to understand,
for example, things like the second derivative test in Calc 3.

In this section we lay down the basic definitions in terms of properties, then
explore their first consequences. We’ll illustrate the notions with examples of all
sorts.

1 Definitions, Notation and Examples

1.1 Sequence Spaces

In order to intruduce certain key constructions and examples, let us begin with a
reformulation of the n-tuple formulation of a vector

x =

x1...
xn


in Rn that allows for generalization to infinite dimensions! This is the idea of infinite
sequence spaces:

Definition 1.1 We will not fuss over the abstract details, but let us agree that a field
of numbers F (also called the ground field) is anything like the rational numbers
Q, the real numbers R, or the complex numbers C, in that division of nonzero numbers
is allowed, and every nonzero number x has an inverse x−1. While it is possible to
say everything in maximum abstractness in terms of a list of properties, in this class
we remain content to denote by F either R or C:

F = R or C

For us, the gains in working with arbitrary fields F are negligible, since the real and
complex cases are the motivation for the abstraction, in the end. We need to master
these cases first. �
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Another way to look at a coordinatized vector x = 〈x1, . . . , xn〉 in Rn is as a function:
Let I = {1, . . . , n} be the index set, and

x : I → R

the function taking real values for each i ∈ I, the components of x,

x(i)
def
= xi

From this point of view, the actual n-tuple 〈x1, . . . , xn〉 is merely the list of values
which x takes, each value xi ∈ R associated uniquely to a specific index i ∈ I. This
n-tuple can be interpreted as a finite sequence, too,

x = 〈x1, . . . , xn〉 = (xi)
n
i=1

Once we put the matter in these terms, we see how to generalize: by freeing the index
set I from being finite!

Definition 1.2 Let us start with the index set, an arbitrary set in general,

I
def
= {i | i ∈ I}

The most interesting examples for us are I = N or R or Rn, as we will see. Once in
possession of I, we can define a vector x to be a real-, complex-, or other F -valued
function:

x : I → F

which is also denoted in terms of its values as

x = (xi)i∈I

The set of all I-tuple vectors is denoted, with a nod to Rn, by

F I = {(xi)i∈I | xi ∈ F, i ∈ I}

and called the Cartesian product or set of all I-tuples. When I = N, we get the
space of infinite sequences,

RN = {(x1, x2, . . . ) | xn ∈ R, n ∈ N}
= {(xn)n∈N | xn ∈ R, n ∈ N}

and

CN = {(z1, z2, . . . ) | zn ∈ C, n ∈ N}
= {(zn)n∈N | zn ∈ C, n ∈ N}

For purposes of complex analysis, where Laurent series indexed over all integers Z are
important, we include the possibility of Z-indexed sequences, too,

RZ = {(xn)n∈N | xn ∈ R, n ∈ Z}
CZ = {(zn)n∈N | zn ∈ C, n ∈ Z}
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We endow these sets with pointwise addition and scalar multiplication: for all
(xi)i∈I and (yi)i∈I ∈ F I , and for all c ∈ F ,

(xi)i∈I + (yi)i∈I
def
= (xi + yi)i∈I

c(xi)i∈I
def
= (cxi)i∈I

Stated in terms of functions, these are

(x + y)(i)
def
= x(i) + y(i)(

cx
)
(i)

def
= cx(i)

This completes our first generalization of Rn and Cn. After we introduce the definition
of an abstract vector space, we will see that our definition here gives RI and CI the
character of a vector space (real and complex, respectively). �

Example 1.3 Let

x = (n)n∈N = (1, 2, 3, . . . ), y =
(
(−1)n

)
n∈N = (−1, 1,−1, . . . ) ∈ RN

be two real sequences. Then, for example

x(7) = x7 = 7 and y(7) = y7 = (−1)7 = −1

and

x + y = (n)n∈N +
(
(−1)n

)
n∈N

=
(
n+ (−1)n

)
n∈N

= (0, 3, 2, 5, . . . )

and

5x = 5(n)n∈N

= (5n)n∈N

= (5, 10, 15, . . . )

�

Exercise 1.4 Let x = (n)n∈N, y =
(
(−1)n

)
n∈N ∈ RN, as in the previous example.

Find the general expression for the sequence 2x− 3y, and use it to determine its 7th
term, 2x7 − 3y7. �

Exercise 1.5 Let x =
(
1
n

)
n∈N and y =

(
1
n2

)
n∈N be sequences in RN. Find the general

expression for the sequence 2x−3y, and use it to determine its 7th term, 2x7−3y7. �
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1.2 Function Spaces

If we go one step further, if extend the range of the index set I from N to R, and by
two more steps to Rn and Cn, then we will have arrived at functions and function
spaces as we know them from calculus1 Generalizing from Rn to RN to RR to RRn

,

p
ro

c
e
ss

o
f

g
e
n

e
ra

liz
a
tio

n

Rn Rn =
{

all f : {1, . . . , n} → R
}

RN RN = {all f : N→ R}

RR RR = {all f : R→ R}

RRn RRn
= {all f : Rn → R}

and duplicating to the complex case,

p
ro

c
e
ss

o
f

g
e
n

e
ra

liz
a
tio

n

Cn Cn =
{

all f : {1, . . . , n} → C
}

CN CN = {all f : N→ C}

CC CC = {all f : C→ C}

CCn CCn
= {all f : Rn → C}

We can also mix and match, for example:

CR = {all f : R→ C}

and
RC = {all f : C→ R}

The process outlined above was the process of progressively widening the domain of
f , from {1, . . . , n} to N to R to Rn, and similarly in the complex direction. We could

1Perhaps including also those with discontinuities.
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also mess around with the range. We can widen it, first to Rn, then to Mm,n(R). Or
we can widen it in other ways. For example

Example 1.6 Consider the set of all functions from R into Rn,

(Rn)R
def
= {all f : R→ Rn}

or the set of all functions from Rn to Rm (not necessarily linear!)

(Rm)R
n def

= {all f : Rn → Rm}

We can go further, and consider all m× n matrix-valued functions,

f : R→Mm,n(R),

f(t) =


f11(t) f12(t) · · · f1n(t)
f21(t) f22(t) · · · f2n(t)

...
...

. . .
...

fm1(t) fm2(t) · · · fmn(t)


I suppose we could denote this accordingly, although the notation is becoming clut-
tered: (

Mm,n(R)
)R

The examples could continue by now messing with the domain. But let us consider
other ways of concocting function spaces. �

Diagramatically, this is the ‘horizontal’ direction of the previous diagram:

process of generalization (widen range)

p
ro

c
e
ss

o
f

g
e
n

e
ra

liz
a
tio

n

(w
id

e
n

d
o
m

a
in

)

Rn
(
Rm
)n (

Mm,n(R)
)n

RN (
Rm
)N (

Mm,n(Rm)
)N

RR (
Rm
)R (

Mm,n(R)
)R

RRn (
Rm
)Rn (

Mm,n(R)
)Rn
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Remark 1.7 Why did we choose these examples as ways of generalizing? Answer:
We need things we can add and scale, and what’s interesting about these examples is,
in widening the domain we followed intuition more closely, enlarging what we started
with, {1, . . . , n}, progressively to Rn or Cn. We could easily throw in Mm,n(R) for the
next installment. There was no particular reason to do it this way beyond following
our nose. The index set I could be any set whatsoever (N, R, Cn, even some
weird probability sample space or something else).

But the case with the range is very different. We need the range to be something
that allows adding and scaling, because we defined those operations componentwise!
This is why we chose Rn and Mm,n(R), because these sets allow for precisely that. �

There are other directions we could take this generalization, for example in the direc-
tion of subsets of the above examples. This is achieved by isolating some desirable
property like continuity or differentiability.

Example 1.8 Consider the subset of RR, the set of all real-valued functions of a real
variable, consisting of only the continuous functions (real-valued of one real vari-
able):

We suppress the
range or codomain
of the continuous
functions mainly for
aesthetic purposes.
Here, C(R) means
C(R,R), that is, the
continuous functions
are real-valued. In
the analysis litera-
ture, C(R) usually
denotes complex-
valued functions,
i.e. C(R,C). In
this course, however,
we take real-valued
functions as our de-
fault, and emphasize
anything else accord-
ingly. For example,
C(R,Cn) denotes
continuous complex
vector-valued func-
tions f : R → Cn.

C(R)
def
= {f : R→ R | f is continuous }

Or consider the subset of RR, the set of all real-valued functions of a real variable,
consisting of only the differentiable functions (real-valued of one real variable):

D(R)
def
= {f : R→ R | f is differentiable }

Then there are the k-times continuously differentiable functions, those for
which all derivatives up to and including order k exist and are continuous,

Ck(R)
def
=
{
f : R→ R

∣∣∣ djf
dxj

exists and is continuous for all 1 ≤ j ≤ k
}

Functions which have continuous derivatives of all orders are called smooth func-
tions or C∞-functions,

C∞(R)
def
=
{
f : R→ R

∣∣∣ djf
dxj

exists and is continuous for all j ∈ N
}

There are functions which are smooth, but which do not everywhere equal their own
Taylor series, e.g.

f(x) =

{
e−1/x, if x > 0,

0, if x ≤ 0,
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See Rudin, Real and Complex Analysis, exercise p. 418. This example stands
in contrast to functions such as ex and sinx, which do equal their Taylor series
everywhere (and in fact become defined in terms of their series centered at 0). Hence,
we introduce the (real) analytic functions, at least in a neighborhood of a point
x = a,

Cω(R)
def
=
{
f ∈ C∞(R)

∣∣∣ f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, for all a ∈ R

}
The most familiar functions which equal their own Taylor series are the polynomials,
which our book denotes non-standardly as P, but which we will denote also by R[x]:

P or R[x]
def
=
{
p(x) ∈ Cω(R)

∣∣∣ p(x) =
n∑
k=0

akx
k, n ∈ N

}
In other words, polynomials are those analytic functions whose Taylor series
are finite! For example, p(x) = 2x2 − 3x+ 1 satisfies p′(x) = 4x− 3 and p′′(x) = 4,
with higher derivatives p(n)(x) = 0, so that, centering the Taylor series at x = 0 we
have

∞∑
n=0

p(n)(0)

n!
(x− 0)n = p(0) +

p′(0)

1!
x+

p′′(0)

2!
x2

= 1 +
−3

1
x+

4

2
x2

= 1− 3x+ 2x2

= p(x)

We may also filter the set of polynomials into subclasses, namely polynomials of
degree at most n,

Pn or Rn[x]
def
= {p ∈ R[x] | deg(p) ≤ n}

It is an easy theorem to prove in general, that for any p(x) =
∑n

k=0 akx
k we have all

coefficients ak = p(k)(0)
k! , and we accordingly leave it as an exercise. �

Exercise 1.9 Prove that all real polynomials are real analytic, i.e. that R[x] ⊆ Cω(R).
This is most easily achieved by demonstrating that for any p(x) =

∑n
k=0 akx

k ∈ R[x],

the coefficients satisfy ak = p(k)(0)
k! . �
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Remark 1.10 The above example deepened the left slot in the third row of the
‘generalization’ diagram above,

RR (
Rm
)R (

Mm,n(R)
)R

that of RR, as follows (the hooked arrows denote inclusion):

P0 = R P1 · · · Pn · · · P = R[x] Cω(R)

C∞(R) · · · Ck(R) · · · C2(R) C1(R) D(R)

C(R) RR

This is the ‘third dimension’ of the generalization diagram, behind the slot of RR.
We could repeat this with each of the other slots in that row, by applying the above
ideas to each of the component functions. For example, a function f ∈ (Rm)R is just
a vector-valued function f : R→ Rm,

f(t) =

 f1(t)
...

fm(t)


each component function fi being a function in RR, to which the above ideas apply.

And, as noted above, a functoin f ∈
(
Mm,n(R)

)R
is just a matrix-valued function

f : R→Mm,n(R),

f(t) =


f11(t) f12(t) · · · f1n(t)
f21(t) f22(t) · · · f2n(t)

...
...

. . .
...

fm1(t) fm2(t) · · · fmn(t)


each component function fij being a function in RR. One could consider these
paths, respectively in Rn and Mm,n(R). In any case, we more or less automatically

get Ck(R,Rm), Cω(R,Rm), C∞
(
R,Mm,n(R)

)
, etc., in the same manner as for RR

(modulo some easy theorems from real analysis). �

Remark 1.11 In the real case (when the domain is R or Rn), the filtration above is
strict, in the sense that there are functions f ∈ Ck(R) which are not in Ck+1(R).

• f(x) = |x| lies in C(R) by not in C1(R).

• f(x) = x|x| lies in C1(R) but not in C2(R).

• f(x) = xk|x| lies in Ck(R) but not in Ck+1(R).

• f(x) =

{
e−1/x, if x > 0,

0, if x ≤ 0,
lies in C∞(R) but not in Cω(R).
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• Certainly ex =
∑∞

n=0
1
n!x

n lies in Cω(R) but not in P.

The situation with complex differentiability is different, because by Cauchy’s theorem
a complex-differentiable function is automatically analytic,

DC(C) = Cω(C)

Important theorems in topology, calculus/real analysis and complex analysis establish
the basic facts about all these sets, and among them is one key one: the assurance
that adding two functions in one of these sets, or scaling one, lands us back in the
set. I.e. these sets are closed under addition and scalar multiplication. �

Exercise 1.12 Prove that f(x) = xk|x| lies in Ck(R) but not in Ck+1(R). �

Remark 1.13 We could duplicate everything we achieved in the third row of the
‘generalization’ diagram in its 4th row:

RRn (
Rm
)Rn (

Mm,n(R)
)Rn

In the first slot, RRn
, we could consider continuous functions C(Rn), smooth functions

C∞(R), and the rest, just like we did in the single-variable case. This is the content of
the second semester of real analysis—Calc 3 with proofs. The only thing that changes
is polynomials look a little different: instead of P = R[x], with x the only variable,
we now have polynomials of n-variables,

R[x] = R[x1, . . . , xn]

For example, p(x, y, z) = x5y2z3 − 4x2y + 20z8 ∈ R[x, y, z]. In fact, this p has degree
10 (the highest sum of powers in any of its monomial terms), so lies in R10[x, y, z] in
fact. With this in mind, the deepening process looks like this:

R = R0[x] R1[x] · · · Rn[x] · · · R[x] Cω(Rn)

C∞(Rn) · · · Ck(Rn) · · · C2(Rn) C1(R) D(Rn)

C(Rn) RRn

And as we proceeded with the single variable case, we do here as well: the second
and third slots of the fourth row may be deepened in exactly the same way. �

There are many other examples of highly refined function spaces, but we merely con-
tent ourselves with mentioning some of them, letting the reader wait until he or she
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takes functional analysis for the full monty. The point here is that analysis, the differ-
ential theory behind calculus and complex variables, is the branch of math dedicated
to intricate methods of filtering function spaces, in ways that lead down to polyno-
mials, the simplest types of functions—polynomials are constructed out of arithmetic
operations. Fine tuning of this type provides a crucial bridge between algebra and
analysis, whose traversal leads eventually to complete solutions to differential equa-
tions, and along the way gives us spectral analysis (the method of eigenvalues) and
other techniques which are fundamental in quantum mechanics and its generalization
to quantum field theory—a current field of intense research.

Example 1.14 The following are subsets of (R)R
n
, functions f : Rn → R. We en-

courage the reader to explore the functional analysis and patial differential equations
literature on these:

• Schwartz functions S(Rn).

• Bump or test functions Cc(Rn).

• Functions vanishing at infinity C0(Rn).

• Bounded functions B(Rn).

• Riemann integrable functions R(R).

• Lebesgue square-integrable functions L2(R).

• Sobolev spaces Hp(Rn) and W k,p(Rn).

Good places to look at these spaces are Reed and Simon, Functional Analysis; Kadison
and Ringrose, Fundamentals of the Theory of Operator Algebras, Volume I: Elemen-
tary Theory ; Duistermaat and Kolk, Distributions: Theory and Applications; Leoni,
A First Course in Sobolev Spaces. The background required is a graduate real anal-
ysis course, e.g. Rudin’s Real and Complex Analysis. �
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What about the second row, can we deepen RN, and by analogy also (Rm)N and(
Mm,n(R)

)N
? These are sequences in R, Rn and Mm,n(R), respectively.

1.3 Sequence Spaces

In the previous section we saw how to take one of the rows of the generalization
diagram, namely the third

Row 3 RR (
Rm
)R (

Mm,n(R)
)R

and fourth

Row 4 RRn (
Rm
)Rn (

Mm,n(R)
)Rn

and deepen them by considering nested sequences of subspaces, which are subsets
closed under addition and scalar multiplication. Can this be duplicated in the second
row?

Row 2 RN (
Rm
)N (

Mm,n(R)
)N

The answer is, of course, Yes! But we cannot proceed in the same way, since continuity
and differentiability make sense when the domain is R or Rn, but not when it is N.
The criterion must be various sorts of convergence.

Example 1.15 (Space of Convergent Sequences c) A sequence (xn)n∈N in RN may
converge,

lim
n→∞

xn = x exists in R

and theorems from Calc 2 guarantee that when two sequences, (xn)n∈N and (yn)n∈N,
converge, xn to x and yn to y, then their sum (xn + yn)n∈N converges to x+ y,

lim
n→∞

(xn + yn) = x+ y = lim
n→∞

(xn) + lim
n→∞

(yn)

That is, when dealing with convergenct sequences, limits distribute over sums. They
similarly distribute over scalar multiplication: if k ∈ R,

lim
n→∞

kxn = kx = k lim
n→∞

xn

This calls for a name and a notation:

c
def
=
{

(xn)n∈N ∈ RN | lim
n→∞

xn = x exists in R}

denotes the space of convergent sequences in RN. The boxed identities (theorems
in Calc 2) show that

(xn)n∈N, (yn)n∈N ∈ c, k ∈ R =⇒ k(xn)n∈N, (xn)n∈N + (yn)n∈N ∈ c

i.e. c is closed under addition and scalar multiplication, so is a subspace of RN. �
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Example 1.16 (Space of Sequences Vanishing at Infinity c0) Let c0 denote the
sequences vanishing at infinity, or space of null sequences, those sequences in
c converging to 0,

c0
def
=
{

(xn)n∈N ∈ RN | lim
n→∞

xn = 0}

By the previous example it is also closed under addition and scalar multiplication.
The sequence ( 1

n

)
n∈N
∈ c0

for example. The sequence
(
tan 1

n

)
n∈N also lies in c0. �

Example 1.17 (Space of Finite Sequences c00) If two sequences (xn)n∈N and (yn)n∈N
in RN have only finitely many nonzero terms, then so does their sum and any scalar
multiple of them. Thus,

c00
def
=
{

(xn)n∈N ∈ RN | only finitely many terms xn 6= 0} �

Example 1.18 (Bounded Sequences b) Let b denote the set of all bounded se-
quences in RN,

b
def
=
{

(xn)n∈N ∈ RN | |xn| < M <∞, for all n ∈ N, for some M > 0
}

The number M is called the bound, and can be defined as M = sup
n∈N
|xn|, where ‘sup’

means supremum, or least upper bound. �

Remark 1.19 If a sequence (xn)n∈N ∈ RN has only finitely many nonzero terms,
then limn→∞ xn = 0, so we see that c00 ⊆ c0.

If we think of Rn as sequences of length n, x = 〈x1, . . . , xn〉 = (xk)
n
k=1, then by letting

xk = 0 for all k > n we may include Rn in c00. Since all convergent sequences are
bounded (this is a theorem of real analysis), we finally conclude

Rn ⊆ c00 ⊆ c0 ⊆ c ⊆ b ⊆ RN

or, in the sense of an ‘inclusion’ diagram,

Rn c00 c0 c b RN

Note the analogy between c0 and C0(R), the space of functions ‘vanishing at infinity,’
which in the real case means those f ∈ C(R) satisfying lim

x→∞
f(x) = 0! �
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This is one way to deepen Rn. Let’s see what other sequence spaces we can concoct.
What about sequences involved in infinite series? Recall that an infinite series

∞∑
n=1

xn

is really a sequence (sN )N∈N of partial sums

sN =

N∑
n=1

xn

so that the series
∑∞

n=0 xn converges by definition if the sequence of partial sums
converges

S =

∞∑
n=1

xn = lim
N→∞

sN = lim
N→∞

N∑
n=1

xn

We can apply the logic of sequences developed above to the case of partial sums:

Example 1.20 (Convergent Series) Since two series
∑∞

n=1 xn and
∑∞

n=1 yn in R are
convergent iff their corresponding sequences of partial sums (SN )N∈N and (TN )N∈N
converge, say to S and T , respectively, and since sums of convergent sequences con-
verge, we see that sums of convergent series also converge,

∞∑
n=1

xn +

∞∑
n=1

yn
def
=

∞∑
n=1

(xn + yn) = S + T

and similarly with scalar multiplication,

c
∞∑
n=1

xn
def
=
∞∑
n=1

cxn = cS

we see that the space of sequences (xn)n∈N whose series
∑∞

n=1 xn converge is closed un-
der vector operations, and must be a subspace of RN, called the space of summable
sequences, and denoted

`
def
=
{

(xn)n∈N ∈ RN
∣∣∣ ∞∑
n=1

xn = S ∈ R
}

The notation ` is by analogy with L in the function space of Lebesgue-integrable
functions,

L(R)
def
=
{
f ∈ RR |

∫
R
f dx exists in R

}
The integral here isn’t the Riemann integral, but the Lebesgue integral of graduate
real analysis (cf. Rudin, Real and Complex Analysis).

Since the sequence of partial sums of any convergent series is convergent, it is bounded,

M = sup
N∈N
|sN | = sup

N∈N

∣∣∣ N∑
n=1

xn

∣∣∣ <∞
14



Therefore, the original sequence (xn)n∈N must be bounded, meaning that each term
in the series must satisfy

|xn| < N <∞

for some 0 < N < ∞. This is Cauchy’s criterion for convergent sequences in R, and
concerns precisely the issue of limits that seemed so technical in Calc 1 (another topic
covered in undergrad real analysis). Well, this means

` ⊆ b

Indeed, by an elementary theorem from Calc 2, proved in undergraduate real analysis,
we know that if a series

∑∞
n=1 xn converges, then limn→∞ xn = 0, so that in fact

` ⊆ c0

We have extend our inclusion chain above by one link:

Rn c00 ` c0 c b RN

In fact, we can cram a few more things in there. �

Example 1.21 (p-Summable Sequences) Let p ∈ R and recall that for any a > 0

exponentiating a by p means ap
def
= ep ln a. Now let (xn)n∈N be a sequence in RN, and

consider the set of all p-summable sequences,

`p
def
=
{

(xn)n∈N ∈ RN
∣∣∣ ( ∞∑

n=1

|xn|p
)1/p

<∞
}

For example, `1 is the space of sequences with absolutely convergent series,

`1 =
{

(xn)n∈N ∈ RN
∣∣∣ ∞∑
n=1

|xn| <∞
}

Since a Calc 2 theorem (proved in undergrad analysis) tells us that any absolutely
convergent series is convergent, we conclude that

`1 ⊆ `

The space of sequences with square-summable series,

`2 =
{

(xn)n∈N ∈ RN
∣∣∣ ( ∞∑

n=1

|xn|2
)1/2

<∞
}

should look very familiar. The length of a vector x = 〈x1, . . . , xn〉 ∈ Rn has a similar
form,

‖x‖ =
√

x · x =
( n∑
i=1

x2i

)1/2
=
( n∑
i=1

|xi|2
)1/2
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Thus, square-summable sequences are just ‘infinite vectors’ x = 〈x1, x2, . . .〉 ∈ RN

whose length is finite,

‖x‖ =
√

x · x =
( ∞∑
i=1

|xi|2
)1/2

<∞

As a result of Young’s Inequality and Minkowski’s Inequality (theorems in under-
grad real analysis), sums and scalar multiples of p-summable sequences are again
p-summable, which means `p spaces are subspaces of RN.

Moreover, by a theorem in undergrad analysis, cf Theorem 17.21 in Yeh, Real Anal-
ysis: The Theory of Measure and Integration, 2nd Ed., we have

1 ≤ p < q <∞ =⇒ `q ⊆ `p

Combining with `1 ⊆ `, we conclude that

1 ≤ p < q <∞ =⇒ `q ⊆ `p ⊆ `1 ⊆ `

Lastly, consider the question of what happens to `p as p→∞, that is what happens

when we consider the limit limp→∞
(∑∞

n=1 |xn|p
)1/p

for any sequence (xn)n∈N ∈ `1.
By Theorem 16.50 in Yeh, Real Analysis: The Theory of Measure and Integration,
2nd Ed.,

lim
p→∞

( ∞∑
n=1

|xn|p
)1/p

= sup
n∈N
|xn|

and since `p ⊆ `1 ⊆ `, this must by finite, whence we see that

b ∩ c = “ lim
p→∞

`p ” ⊆ `1 ⊆ `

and for this reason b is sometimes denoted `∞,

b = `∞

Note, however, that b is not contained in any `p or even in `, because b consists of
merely bounded sequences, not necessarily convergent sequences. �

Remark 1.22 We have arrived at the following deepening of RN: for all 1 ≤ p < q <
∞,

Rn c00 `q `p `1 `

c0 c b = `∞ RN

There is more to say, of course, but let us content ourselves with this overview.
Needless to say, the procedure can be carried through on the other terms of that
second row of the ‘generalization’ diagram. �
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1.4 Abstract Vector Spaces and Their Basic Properties

Let’s return to the remark we made above concerning our process of generalizing Rn,
that it occurs in two directions:

(1) Widening the possibilities for the domain of any vector x : {1, . . . , n} → R from
{1, . . . , n} to all conceivable ‘index sets’ I.

(2) Widening the codomain (the target space containing the range) in certain spe-
cific directions, first from R to Rn and thence to Mm,n(R). This is about as
far as we went, though we could squeeze out a couple more of these types of
codomain spaces if we really wanted to—we don’t at the moment.

Why did we choose Rn and Mm,n(R) as our extensions in (2)? Answer: because
what we need to have is things that add and scale like vectors in Rn. And if f takes
values in Rn or Mm,n(R), then by Theorems 1.6 and 1.11, ‘Vectors in Rn,’ and their
matrix analogs Theorems 2.1 and 2.2, ‘Matrices and Linear Transformations,’ these
will add like vectors in the sense of those eight properties.

These eight properties form the unifying principle behind all our examples above,
because it turns out that all proofs about the algebraic vectorial side of Rn depend
on just these eight properties. This is the reason, it seems, that the eight properties
are the definition of the generic, abstract vector space.

Definition 1.23 A vector space V , over a field of numbers F (which we take to
be either R or C here), is a set V on which the operations addition + and scalar
multiplication · satisfy the following conditions: for all u, v, w ∈ V and a, b, 1 ∈ F ,

(1) u+ v = v + u (commutativity of addition)

(2) (u+ v) + w = u+ (v + w) (associativity of addition)

(3) There is a zero vector ~0 ∈ V satisfying v +~0 = v for all v ∈ V
(4) Every vector v ∈ V possesses a negative u ∈ V , characterized by u+ v = 0

(5) 1v = v for all v ∈ V (here, 1 ∈ F = R or C)

(6) (ab)v = a(bv) (associativity of scalar multiplication)

(7) a(u+ v) = au+ av (distributivity over vector addition)

(8) (a+ b)v = av + bv (distributivity over scalar addition)

If F = R, we call V a real vector space. If F = C, we call V a complex vector
space. �

Lemma 1.24 (Cancellation Law) Let u, v and w be any vectors in V . Then,

u+ w = v + w =⇒ u = v

That is, we may ‘cancel w’ or ‘subtract w from both sides.’

Proof : Let z be the negative of w, so that w + z = z + w = 0. Then, by properties
(2), (3)

u
(3)
= u+0

def z
= u+(w+z)

(2)
= (u+w)+z

hyp
= (v+w)+z

(2)
= v+(w+z)

def z
= v+0

(3)
= v �
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Example 1.25 Let V be a vector space over F = R or C. Then for all v ∈ V we have

0v = ~0

where 0 ∈ F , and ~0 ∈ V .

Solution: Use properties (3) and (8):

0v + 0v
(8)
= (0 + 0)v = 0v

(3)
= 0v +~0

Subtracting 0v from both sides shows that 0v = ~0. �

Example 1.26 (a) Show that the negative of any vector v is unique. We accordingly
denote it −v.

(b) Show that for any v ∈ V , we have (−1)v = −v.

Solution: (a) Suppose u and w are both negatives of v. Then u+ v = 0 = w + v, so
subtracting v from both sides gives u = w. (b) Use part (a):

(−1)v + v
(5)
= (−1)v + 1v

(8)
= ((−1) + 1)v = 0v

prev ex
= ~0

Thus, since (−1)v + v = ~0, part (a) kicks in to give us (−1)v = −v. �

Example 1.27 Show that if any vector v ∈ V satisfies v = −v, then v = ~0. Hint: Use
the previous example.

Solution: If v = −v, then by the previous exercise, part (b), v = −v = (−1)v, so
subtracting (−1)v from both sides gives

2v = (1+1)v
(8)
= 1v+1v

(5)
= 1v+v

hyp
= 1v+(−v)

(b)
= 1v+(−1)v

(8)
= (1+(−1))v = 0v

prev ex
= ~0

But then dividing by 2,

v
(5)
= 1v =

(1

2
· 2
)
v

(6)
=

1

2
(2v)

hyp
=

1

2
~0

exercise
= ~0 �

Exercise 1.28 Show that the zero vector ~0 is unique. That is, suppose there were
another zero vector ~0′ satisfying (3) in the definition of V , and demonstrate, using
only the properties of V , that ~0 = ~0′. �

Exercise 1.29 Show from the definition of V , the above lemma, and the previous
exercise that for any scalar a ∈ F we have a~0 = ~0. �
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Definition 1.30 Let V be a vector space over F = R or C. A nonempty subset U of
V is called a vector subspace if U is closed under addition and scalar multiplication:

(1) u, v ∈ U =⇒ u+ v ∈ U .

(2) u ∈ U and c ∈ F =⇒ cu ∈ U . �

Remark 1.31 Since U is nonempty it will have to contain the zero vector 0, but
this is now a consequence of a proposition. Don’t get lost in these details. The bigger
point is that we want to distinguish between a subset and a subspace: a subspace is
supposed to be a special type of subset, one that is itself a vector space. This is the
main idea. The notion that this is due to the closure properties is an innocent but
slightly confused mixing of related ideas. Let me explain, maybe this will help you in
reading math books.

You should always keep an eye on the cultural component of math in your learning.
The professional mathematician gets quickly embroiled in the technical question, ‘How
best to reach back in the logical chain of things in order to anchor a desired concept
to an axiom or some other “more basic” fact?’ Once an anchor is hit upon (such as
the two closure properties in the definition above), the mathematician proceeds to
prove that the anchor indeed logically supports the desired conclusion, in this case
that a subspace U of V (according to our closure-property definition) is a vector space
itself.

But this sort of thing isn’t always satisfying to the student, unless there is a good
reason for the anchoring itself . The anchor is supposed to support a difficult or weird
conclusion, to give a reason and an explanation for it. But this is rarely how it goes.
Sometimes it happens, and it happens in modern math more than anywhere else, that
the anchor is logically equivalent to the goal. In our case, the anchor, the definition
of a subspace in terms of closure under + and ·, is logically equivalent to the goal
of viewing a subspace as a subset which is a vector space. When this sort of logical
equivalence occurs, one will encounter in the literature a reversal of the order in some
books. One book will take one statement for a goal and the other for an anchor, and
another book will proceed in the reverse direction.

This leaves the student with the impression that there is no best starting point when
two or more things are logically equivalent. Of course, this is just the nature of
‘logical equivalence,’ it is bi-directional. ‘Starting points’ and ‘ending points’ appear,
logically, to be a matter of perspective, and therefore convenience, only. It is the
modern way, the way of convenience. But convenience itself is perspectival. What
is convenient to a professional mathematician, intent upon organizing things towards
a certain purpose—or, perhaps, towards no purpose at all, just personal taste—may
not be convenient to a student learning the material for the first time, who needs good
reasons for things, especially unusual, counterintuitive things. When one encounters a
more obscure reason for something perfectly simple, one should inquire more deeply
into the matter, for likely there is a hidden cultural reason for this. There might
not be a satifying answer to culture, either, but this is how curiosity leads towards
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answers, if there are any to be had. 2

In this course, we will try to lay the formalism over an intuitively understandable
progression from simple concepts to those more complex. To return to our case of
a subspace U defined as closed under addition and scalar multiplication, and from
this deducing the more satisfying statement that U must on that account be a vector
space itself (and so containing 0), let us say this: the idea here is convenience, that
2 properties (as in the definition of a subspace) are easier to remember than 8 (as in
the definition of a vector space). One therefore takes the 2-property definition and
works once and for all to deduce the other 8. Thereafter we only have to check these
2, for we know they imply the other 8. �

Proposition 1.32 If U is a subspace of V according to our Definition 1.30, then U
is a vector space.

Proof : We need to check the list of 8 properties of Definition 1.23. From the fact
that U is nonempty and closed under + and · (scalar mult.), as per Definition 1.30,
we can conclude that some vector u lies in U , and therefore, by Example 1.26, that
its negative −u = (−1)u also lies in U , being a scalar multiple of u. Thus U contains
all negatives of its members, which is property (4) of a vector space. Also, ~0 ∈ U ,
since ~0 = u+ (−u) for any u ∈ U . This is property (3). Properties (1)-(2) and (5)-(8)
hold automatically, since they hold in V and U is closed under + and ·. �

Definition 1.33 Let U1, U2, . . . , Uk be subspaces of V , and define their sum to be

U1 + U2 + · · ·+ Uk
def
= {u1 + u2 + · · ·+ uk ∈ V | ui ∈ Ui for all i}

The sum is called a direct sum if additionally any two subspaces intersect trivially,
Ui ∩ Uj = {0}, and in this case we write

U1 ⊕ U2 ⊕ · · · ⊕ Uk ≡
n⊕
i=1

Ui

This idea works for infinitely many subspaces {Ui}i∈I . We have the sum
∑

i∈I Ui and
the direct sum

⊕
i∈I Ui. The elements of each are finite sums ui1 + · · ·+ uik . �

Exercise 1.34 Show that the intersection
⋂
i∈I Ui and sum

∑
i∈I Ui of any number of

subspaces Ui of V are again subspaces. �

2In fact, I think the above remarks constitute a major reason for the difficulty of math. It is
today a bit of a forest of logical equivalences mixed with uni-directional implications, the beginning
and end of which are lost in the haze. In principle, set theory and logic form the foundation of all
math, but geometry sits somewhat uneasily with this way of thinking. In any case, to the student
encountering this tangle for the first time it can be discouraging without some sort of Ariadne’s
thread, for Descartes’ original notion of clarity is mostly local, the global proving somewhat elusive.
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2 Bases and Subspaces

As with Rn, so here we must consider the ‘generation’ of a subspace from a spanning
set, and conversely find a spanning set to generate the subspace. We list the definitions
here:

Definition 2.1 Suppose S is a subset of a vector space V . Take n vectors v1, . . . , vn
in S and n scalars a1, . . . , an in F , and call the sum of scalar multiples

a1v1 + · · ·+ anvn

a linear combination of the vectors v1, . . . , vn. The result of a linear combination
of vectors is another vector in V . This is why we say S generates all the vectors in
its span, which is the set of all linear combinations of vectors in S,

span(S)
def
=
{
a1v1 + · · ·+ anvn | ai ∈ F, vi ∈ S, n ∈ N

}
The relationship between arbitrary vectors and linear combinations of known vectors
is precisely the question of coordinates. Anyway, the scalars ai ∈ F are called the
coefficients of the linear combination, or more generally the β-coordinates. �

Definition 2.2 By Example 1.25 above we know that 0v = ~0 for all v ∈ V . There-
fore, a linear combination of the form 0v1 + · · ·+ 0vn equals ~0 + · · ·+~0 = ~0. We call
this the trivial representation of ~0 in the vectors v1, . . . , vn. Since ~0 thus always
has the trivial representation, we shall be interested in vectors vi which possess a
nontrivial representation of ~0, a linear combination equal to ~0

a1v1 + · · ·+ anvn = ~0

but in which not all coefficients ai equal 0. In this case we say the vectors v1, . . . , vn
are linearly dependent. If the vectors only allow for the trivial representation of ~0
then we say v1, . . . , vn are linearly independent. �

We have the abstract analog of Theorem 1.26 in our ‘Bases, Coordinates and Repre-
sentations’ notes:

Theorem 2.3 (Characterization of Linear Independence) Let V be a real or
complex vector space, and let β be a nonempty collection of nonzero vectors in V ,
possibly infinite. Then, β is linearly independent iff none of its vectors is a linear
combination of the remainder, i.e.

β is linearly independent ⇐⇒ no v ∈ β lies in span
(
β\{v}

)
�

We also have the analog of Theorem 3.7 in the ‘Bases, Coordinates and Representa-
tions’ notes, but leave the proof to the appendix. The proof, too, is entirely analogous,
which is why I’m relegating it to the back.
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Theorem 2.4 (Equivalent Characterizations of Bases) Let β be a subset of a
vector space V over F = R or C. The following are logically equivalent statements
about β:

(1) β is a basis for V .

(2) Every nonzero vector v ∈ V has a unique representation in β, meaning

v = a1v1 + · · ·+ akvk

for unique ai ∈ R (called β-coordinates) and vi ∈ β.

(3) span(β) = V but no v ∈ β lies in the span of β\{v}.
(4) β is a minimal spanning set, meaning span(β) = V but no proper subset β̃

of β spans V .

(5) β is a maximal linearly independent set, meaning β is linearly independent,
but no strictly larger extension γ of β, i.e. β ⊂ γ, is linearly independent. �

Corollary 2.5 If V is a vector space, then a collection of vectors β = {v1, . . . , vn} is
a basis for V iff

V = span(v1)⊕ · · · ⊕ span(vn) =

n⊕
i=1

span(vi) �

Theorem 2.6 (Existence of a Basis) Let V be a nontrivial vector space and I a
linearly independent set of vectors in V which is contained in a spanning set S,

I ⊆ S ⊆ V, I linearly independent and V = span(S)

then there exists a basis β for V ‘between I and S,’

I ⊆ β ⊆ S

From this we conclude that:

(1) Any nonzero vector space has a basis.

(2) Any linearly independent set in V is contained in a basis.

(3) Any spanning set in V contains a basis. �

Lemma 2.7 If V is a vector space and S and T are subsets of V , then the following
hold:

(1) S ⊆ T ⊆ V =⇒ span(S) ⊆ span(T )

(2) S ⊆ T ⊆ V and span(S) = V =⇒ span(T ) = V

(3) span(S ∪ T ) = span(S) + span(T )

(4) span(S ∩ T ) ⊆ span(S) ∩ span(T ) �
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Corollary 2.8 (All Subpaces Have Complements) If U is a nontrivial subspace
of a vector space V , then there exists a subspace T of V such that

V = U ⊕ T �

This corollary is also true if U = {~0}, but why would we ever bother complementing
{~0} with V ? We already know that V = {~0} ⊕ V .

Theorem 2.9 (Replacement Theorem) If V is a vector space such that V =
span(S) for some subset S of V with |S| = n, and if B is a linearly independent
subset of V with |B| = m, then

(1) m ≤ n
(2) There exists a subset C of S with |C| = n−m such that V = span(B ∪ C) �

Corollary 2.10 (Dimension) If V is a vector space with a finite spanning set, then
every basis for V contains the same number of vectors, and this number is called the
dimension of V . �

The number may be an infinite cardinal number, but it’s still a measure of the size
of V , because even infinite cardinals come in different sizes. Let’s make this explicit,
and along the way see what happens to finite-dimensional vector spaces

Corollary 2.11 If V is a finite-dimensional vector space with dim(V ) = n, then the
following hold:

(1) Any finite spanning set for V contains at least n vectors, and a spanning set for
V that contains exactly n vectors is a basis for V .

(2) Any linearly independent subset of V that contains exactly n vectors is a basis
for V .

(3) Every linearly independent subset of V can be extended to a basis for V . �

Theorem 2.12 Any two bases for a vector space V have the same cardinality, even
infinite spaces. This cardinality is called the dimension of V . �

Corollary 2.13 If V is a vector space and U is a subspace of V :

(1) dim(U) ≤ dim(V )

(2) dim(U) = dim(V ) <∞ =⇒ S = V

(3) V is infinite-dimensional iff it contains an infinite linearly independent subset.
�
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Theorem 2.14 Let V be a vector space.

(1) If B is a basis for V and B = B1 ∪B2, where B1 ∩B2 = ∅, then

V = span(B1)⊕ span(B2)

(2) If
V = S ⊕ T

and we have bases B1 for S and B2 for T , then B1 ∩B2 = ∅ and B = B1 ∪B2

is a basis for V . �

Theorem 2.15 If S and T are subspaces of a vector space V , then

dim(S) + dim(T ) = dim(S + T ) + dim(S ∩ T )

As a consequence,

V = S ⊕ T ⇐⇒ dim(V ) = dim(S) + dim(T ) �

Corollary 2.16 If S and T are subspaces of a vector space V , then

(1) dim(S + T ) ≤ dim(S) + dim(T )

(2) dim(S + T ) ≤ max{dim(S),dim(T )}, if S and T are finite-dimensional. �

Theorem 2.17 (Direct Sums) If F = {Si | i ∈ I} is a family of subspaces of a
vector space V such that V =

∑
i∈I Si, then the following statements are equivalent:

(1) V =
⊕

i∈I Si.

(2) ~0 ∈ V has a unique expression as a sum of vectors each from different Si,
namely as a sum of zeros: for any distinct j1, . . . , jn ∈ I, we have

vj1 + vj2 + · · ·+ vjn = ~0 and vji ∈ Sji for each i =⇒ vj1 = · · · = vjn = ~0

(3) Each v ∈ V has a unique expression as a sum of distinct vji ∈ Sji\{~0},

v = vj1 + vj2 + · · ·+ vjn

(4) If γi is a basis for Si, then γ =
⋃
i∈I γi is a basis for V . If V is finite-

dimensional, then this may be restated in terms of ordered bases γi and γ. �
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3 Appendix 1: Proofs of the Basis and Subspace Theo-
rems

Proof of Theorem 2.3:

Proof: The proof is essentially the same. Suppose first β is linearly independent. If
there were some v ∈ β lying in span(β\{v}), so that v =

∑k
j=1 ajvj for some other

vj ∈ β, then by subtracting v from both sides we would have a nontrivial representation
of ~0 in β,

~0 =

k∑
j=1

ajvj + (−1)v

an impossibility. Note that we used here −v = (−1)v, which was proved in Example
1.26.

Conversely, if no v lies in the span of the remaining vectors in β, then any β-representation
of ~0 would have to be trivial, otherwise we contradict our spanning assumption: if, say,∑k

j=1 ajvj = ~0 for some vj ∈ β but not all aj = 0, then one of them, say ai 6= 0. We
can solve for vi and divide through by ai to get the contradiction,

vi =
∑
j 6=i

(
−aj
ai

)
vj

which exhibits vi, a member of β, as a linear combination of other vectors vj ∈ β:
a contradiction. We therefore have to conclude that all aj = 0, and so β is linearly
independent. �

Proof of Theorem 2.4

Proof: (1) =⇒ (2): If β is a basis, it is linearly independent, and if v ∈ V is a nonzero
vector which potentially may have two different β-representations,

v = a1u1 + · · ·+ anun = b1v1 + · · ·+ bmvm

where the ai and bi are scalars in F = R or C, and the ui and vi are vectors in β, then
grouping any vectors uij and vij that are equal, we have

0 = (ai1 − bi1)ui1 + · · ·+ (aik − bik )sik (uij = vij )

+ aik+1uik+1 + · · ·+ ainuin (only the scalar multiples of the ui)

+ bik+1vik+1 + · · ·+ bimvim (only the the scalar multiples of the vi)

implies aik+1 = · · · = ain = bik+1 = · · · = bim = 0, so n = m = k, and for j = 1, . . . , k

we have aij = bij , so that v =
∑k

j=1 aivi in fact has only one β-representation (after
relabeling and tyding up), so it is uniquely represented in β.

(2) =⇒ (1): If every vector v ∈ V has a unique β-representation v =
∑k

j=1 ajvj ,

then ~0 ∈ V does, too. But ~0 already has the trivial representation, ~0 =
∑k

j=1 0vj
according to Example 1.25, and this is the only one allowed, which means β is linearly
independent. Since every vector is represented in β, it also spans V , and β is a basis.

(1)⇐⇒ (3): Suppose (1), that β is a basis. Then β spans V and is linearly independent,
which by Theorem 2.3 means no v ∈ β lies in the span of β\{v}, so that β satisfies (3).
Conversely, if β satisfies (3), then span(β) = V and no v ∈ β lies in the span of β\{v},
which again by Theorem 2.3 means β is linearly independent.

(1) ⇐⇒ (4): If β is a linearly independent spanning set and T is a proper subset of β
that also spans V , then any vectors in β\T would have to be linear combinations of
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the vectors in T , violating (3) for β, since (3) is equivalent to (1). Thus β is a minimal
spanning set. Conversely, if β is a minimal spanning set, then it must be linearly
independent, for otherwise there would be some v ∈ β that is a linear combination of
other vectors in β, which would mean β\{v} also spans V , contradicting minimality.
Thus (4) implies (1).

(1) ⇐⇒ (5): If (1) holds, so that β is linearly independent and spans V , but we
erroneously suppose β is not maximal in terms of linear independence, then we can
count on there being a vect r v ∈ V which is not in β with the property that β ∪ {v}
is also linearly independent. But v /∈ span(β) if we remember that (3) is equivalent
to (1), a contradiction. Therefore β is maximal and (1) implies (5). Conversely, if β
is a maximal linearly independent set, then β must span V , for otherwise there is a
v ∈ V \β that isn’t a linear combination of vectors in β, implying β ∪ {v} is linearly
independent proper superset, violating maximality. Therefore span(β) = V , and (5)
implies (1). �

Proof of Theorem 2.6

Proof: Let A be the set of all linearly independent sets L such that I ⊆ L ⊆ S,

A def
= {L ⊆ V | I ⊆ L ⊆ S, L is linearly independent}

Then A is non-empty because I ⊆ I ⊆ S, so I ∈ A. Now, if

C = {Ik | k ∈ K} ⊆ A

is a chain in A, that is a totally ordered (under set inclusion) subset of A (Ik ⊆ Ik+1 ⊆
· · · ), then the union

U =
⋃
C =

⋃
i∈K

Ii

is linearly independent and satisfies I ⊆ U ⊆ S, that is U ∈ A. But by Zorn’s lemma
every chain has a maximal element β, so that we have β ∈ A, a maximal element which
is linearly independent. But of course such a β is a basis for V = span(S), for if any
s ∈ S is not a linear combination of elements in β, then β ∪{s} is linearly independent
and β is contained in a strictly larger set β ∪ {s}, contradicting the maximality of
β. Therefore S ⊆ span(β), and so V = span(S) ⊆ span(β) ⊆ V , or V = span(β).
This shows (1) that there is a basis β for V , (2) any linearly independent set I has is
contained in some β, and (3) any spanning set S contains some basis β. �

Proof of Lemma 2.7

Proof: (1) and (2) are immediate, so we only need to prove 3 and 4:

(3) If v ∈ span(S ∪ T ), then there exist vectors v1, . . . , vm ∈ S, u1, . . . , un ∈ T and
scalars a1, . . . , am and b1, . . . , bn ∈ F such that

v = v1a1 + · · ·+ vmam + b1u1 + · · ·+ bnun

Note, however, v1a1 + · · · + vmam ∈ span(S) and b1u1 + · · · + bnun ∈ span(T ), so
that v ∈ span(S) + span(T ). Thus span(S ∪ T ) ⊆ span(S) + span(T ). Conversely,
if v = s + t ∈ span(S) + span(T ), then s ∈ span(S) and t ∈ span(T ), so that by
(1), since S ⊆ S ∪ T and T ⊆ S ∪ T , we must have span(S) ⊆ span(S ∪ T ) and
span(T ) ⊆ span(S ∪ T ). Consequently, s, t ∈ span(S ∪ T ), and since span(S ∪ T ) is a
subspace, v = s + t ∈ span(S ∪ T ). That is span(S) + span(T ) ⊆ span(S ∪ T ). Thus,
span(S) + span(T ) = span(S ∪ T ).

(4) First, span(S ∩ T ), span(S) and span(T ) are subspaces, while by Exercise 5.2 we
know that span(S) ∩ span(T ) is also a subspace. Now, consider x ∈ span(S ∩ T ).
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There exist vectors v1, . . . , vn ∈ S ∩ T and scalars a1, . . . , an ∈ F such that x =
a1v1 + · · · + anvn. But since v1, . . . , vn belong to both S and T , x ∈ span(S) and
x ∈ span(T ), so that x ∈ span(S) ∩ span(T ). It is not in general true, however,
that span(S) ∩ span(T ) ⊆ span(S ∩ T ). For example, if S = {e1, e2} ⊆ R2 and T =
{e1, (1, 1)}, then span(S)∩span(T ) = R2∩R2 = R2, but span(S∩T ) = span({e1}) = R,
and R2 6⊆ R. �

Proof of Corollary 2.8

Proof: If U = V , then let T = {0}. Otherwise, if V \U 6= ∅, then since V has a basis
β and β is maximal, we must have U = span(β ∩ U) and β ∩ (V \U) 6= ∅. That is,
there is a nonzero subspace T = span(β ∩ (V \U)), and by Lemma 2.7

V = span(β) = span((β∩U)∪ (β∩ (V \U))) = span(β∩U) + span(β∩ (V \U)) = U +T

But U ∩ T = {0} because of the essentially unique representation of vectors in V as
linear combinations of vectors in β. Hence, V = U ⊕T , and T is a complement of U . �

Proof of Theorem 2.9

Proof: The proof is by induction on m, beginning with m = 0. For this m, B = ∅, so
taking C = S, we haveB∪C = ∅∪S = S, which generates V . Now suppose the theorem
holds for some m ≥ 0. For m+ 1, let B = {v1, . . . , vm+1} ⊆ V be linearly independent.
By removing vm+1 we still have a linearly independent set B′ = {v1, . . . , vm}, and
so by the induction hypothesis m ≤ n and there is a C′ = {u1, . . . , un−m} ⊆ S
such that {v1, . . . , vn} ∪ C′ generates V . This means there are scalars a1, . . . , am, and
b1, . . . , bn−m ∈ F satisfying

vm+1 = a1v1 + · · ·+ amvm + b1u1 + · · ·+ bn−mun−m (3.1)

Note that if n = m, C′ = ∅, so that vm+1 ∈ span(B′), contradicting the assumption
that B is linearly independent. Therefore, n > m, or n ≥ m + 1. Moreover, some bi,
say b1, is nonzero, for otherwise we have vm+1 = a1v1 + · · ·+amvm, leading again to B
being linearly dependent in contradiction to assumption. Solving (3.1) for u1, we get

u1 = (−b−1
1 a1)v1+ · · ·+(−b−1

1 am)vm+b−1
1 vm+1+(−b−1

1 b2)u2+ · · ·+(−b−1
1 bn−m)un−m

Let C = {u2, . . . , un−m}. Then u1 ∈ span(B∪C), and since v1, . . . , vm, u2, . . . , un−m ∈
B ∪ C, they are also in span(B ∪ C), whence

B′ ∪ C′ ⊆ span(B ∪ C)

Now, since span(B′ ∪ C′) = V by the induction hypothesis, we have also span(B ∪
C) = V . So we have B linearly independent with |B| = m + 1 vectors, m + 1 ≤ n,
span(B ∪ C) = V , and C ⊆ S with |C| = (n −m) − 1 = n − (m + 1) vectors, so the
theorem holds for m+ 1. Therefore the theorem is true for all m ∈ N by induction. �

Proof of Corollary 2.10

Proof: Suppose S is a finite spanning set for V , and let β and γ be two bases for V
with |γ| > |β| = k, so that some subset T ⊆ γ contains exactly k + 1 vectors. Since
T is linearly independent and β generates V , the replacement theorem implies that
k + 1 ≤ k, a contradiction. Therefore γ is finite and |γ| ≤ k. Reversing the roles of β
and γ shows that k ≤ |γ|, so that |γ| = |β| = k. �

27



Proof of Corollary 2.11

Proof: Let B be a basis for V . (1) Let S ⊆ V be a finite spanning set for V .
By Theorem 2.6, S contains a basis B for V , and by Corollary 2.10 |B| = n vectors.
Therefore |S| ≥ n, and |S| = n =⇒ S = B, so that S is a basis for V . (2) Let I ⊆ V be
linearly independent with |I| = n. By the Replacement Theorem there exists a subset T
of B with |T | = n−n = 0 vectors such that V = span(I ∪T ) = span(I ∪∅) = span(I).
Since I is also linearly independent, it is a basis for V . (3) If I ⊆ V is linearly
independent with |I| = m vectors, then the replacement theorem asserts that there
exists a subset H of B containing exactly n −m vectors such that V = span(I ∪H).
Now, |I ∪ H| ≤ n, so that by 1 |I ∪ H| = n, and so I ∪ H is a basis for V extended
from I. �

Proof of Theorem 2.12

Proof: If V is finite-dimensional, then the previous corollary applies, so we need only
consider bases that are infinite sets. Let B = {bi | i ∈ I} ba a basis for V and let C
be any other basis for V . Then all c ∈ C can be written as finite linear combinations
of vectors in B, where all the coefficients are nonzero. That is, if Uc = {1, . . . , nc}, we
have

c =

nc∑
i=1

aibi =
∑
i∈Uc

aibi

for unique a1, . . . , anc ∈ F . But because C is a basis, we must have I =
⋃

c∈C Uc,
for if

⋃
c∈C ( I, then all c ∈ C can be expressed by a proper subset B′ of B, so that

V = span(B′), which is contradiction of the minimality of B as a spanning set. Now,
for all c ∈ C we have |Uc| < ℵ0, which implies that

|B| = |I| =
∣∣∣⋃
c∈C

Uc

∣∣∣ ≤ ℵ0|C| = |C|
Reversing the roles of B and C gives |C| ≤ |B|, so by the Schröder-Bernstein theorem
we have |B| = |C|. �

Proof of Theorem 2.14

Proof: (1) If B1 ∩ B2 = ∅ and B = B1 ∪ B2 is a basis for V , then 0 /∈ B1 ∪ B2.
But, if a nonzero vector v ∈ span(B1) ∩ span(B2), then B1 ∩B2 6= ∅, a contradiction.
Hence {0} = span(B1)∩ span(B2). Moreover, since B1 ∪B2 is a basis for V , and since
it is also a basis for span(B1) + span(B2), we must have V = span(B1) + span(B2),
and hence V = span(B1) ⊕ span(B2). (2) If V = S ⊕ T , then S ∩ T = {0}, and
since 0 /∈ B1 ∪ B2, we have B1 ∩ B2 = ∅. Also, since all v ∈ V = S ⊕ T have the
form a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn for u1, . . . , um ∈ B1 and v1, . . . , vn ∈ B2,
v ∈ span(B1 ∪B2), so B1 ∪B2 is a basis for V by Theorem 2.3. �

Proof of Theorem 2.15

Proof: If B = {bi | i ∈ I} is a basis for S ∩T , then we can extend this to a basis A∪B
for S and to another basis B ∪ C for T , where A = {aj | j ∈ J}, C = {ck | k ∈ K}
and A ∩ B = ∅ and B ∩ C = ∅. Then A ∪ B ∪ C is a basis for S + T : clearly
span(A∪B∪C) = S+T , so we need only verify that A∪B∪C is linearly independent.
To that end, suppose not, suppose there are nonzero scalars c1, . . . , cn ∈ F\{0} and
v1, . . . , vn ∈ A ∪B ∪ C such that

c1v1 + c2v2 + · · ·+ cnvn = 0
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Then some vi ∈ A ∩ C since by our construction A ∪ B and B ∪ C are linearly inde-
pendent. Isolating the vectors in A, say v1, . . . , vk, on one side of the equality shows
that there is a nonzero vector,

x =

∈span(A)︷ ︸︸ ︷
a1v1 + · · ·+ akvk

= ak+1vk+1 + · · ·+ anvn︸ ︷︷ ︸
∈span(B∪C)

=⇒ x ∈ span(A) ∩ span(B ∪C) = span(A) ∩ T ⊆ S ∩ T

since span(A) ⊆ S. Consequently x = ~0, and therefore a1 = · · · = an = 0 since A
and B ∪ C are linearly independent sets, a contradiction. Thus A ∪ B ∪ C is linearly
independent and hence a basis for S + T . Moreover,

dim(S) + dim(T ) = |A ∪B|+ |B ∪ C|
= |A|+ |B|+ |B|+ |C|
= |A ∪B ∪ C|+ |B|
= dim(S + T ) + dim(S ∩ T )

Of course if S ∩ T = {0}, then dim(S ∩ T ) = 0, and

dim(S) + dim(T ) = dim(S ⊕ T ) = dim(V )

while if dim(V ) = dim(S) + dim(T ), then dim(S ∩ T ) = 0, so S ∩ T = {0}, and so
V = S ⊕ T . �

Proof of Theorem 2.17

Proof: (1) =⇒ (2): Suppose (1) is true, that is V =
⊕

i∈I Si, and choose v1, . . . , vn ∈
V such that vi ∈ Ski and v1 + · · ·+ vk = 0. Then for any j,

−vj =
∑
i6=j

vi ∈
∑
i 6=j

Si

However, −vj ∈ Sj , whence

−vj ∈Wj ∩
∑
i 6=j

Si = {~0}

so that vj = ~0. This is true for all j = 1, . . . , k, so v1 = · · · = vk = ~0, proving (2).

(2) =⇒ (3): Suppose (2) is true and let v ∈ V =
∑

i∈I Si be given by

v = u1 + · · ·+ un

= w1 + · · ·+ wm

for some ui ∈ Ski and wj ∈ Skj . Then, grouping terms from the same subspaces

~0 = v − v = (ui1 − wi1) + · · ·+ (uik − wik ) + uik+1 + · · ·+ uin − wik+1 − · · · − wim

=⇒

{
ui1 = wi1 , · · · , uik = wik

and uik+1 = · · · = uin = wik+1 = · · · = wim = ~0

proving uniqueness.

(3) =⇒ (4): Suppose each vector v ∈ V =
∑n

i∈I Si can be uniquely written as v =
v1 + · · ·+ vk, for vi ∈ Sji . For each i ∈ I let γi be an ordered basis for Si, so that since

V =
∑n

i∈I Si, we must have that V = span(γ) = span
(⋃k

i=1 γi
)

, so we only need to

show that γ is linearly independent. To that end, let

v11, v12, . . . , v1n1 ∈ γi1
...

vm1, vm2, . . . , vmnm ∈ γim
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for any bases γij for Sij ∈ F , then let aij ∈ F for i = 1, . . . ,m and j = 1, . . . , ni, and
let wi =

∑ni
j=1 aijvij . Then, suppose

w1 + · · ·+ wm =
∑
i,j

aijvij = 0

since ~0 ∈
⋂m

i=1 Sji and ~0 = ~0 + · · · + ~0, by the assumed uniqueness of expression of

v ∈ V by wi ∈ Si we must have wi = ~0 for all i, and since all the γi are linearly
independent, we must have aij = 0 for all i, j.

(4) =⇒ (1): if (4) is true, then there exist ordered bases γi the Si such that γ =
⋃

i∈I γi
is an ordered basis for V . By Lemma 2.7 and Theorem 2.14,

V = span(γ) = span(
⋃
i∈I

γi) =
∑
i∈I

span(γi) =
∑
i∈I

Si

Choose any j ∈ I and suppose for a nonzero vector v ∈ V we have v ∈ Sj ∩
∑

i 6=j Si.
Then,

v ∈ Sj = span(γj) ∩ span(
⋃
i 6=j

γi) =
∑
i 6=j

Si

which means v is a nontrivial linear combination of elements in γi and elements in⋃
i6=j γi, so that v can be expressed as a linear combination of

⋃
i∈I γi in more than

one way, which contradicts uniqueness of representation of vectors in V in terms of a
basis for V , Theorem 2.3. Consequently, any such v must be 0. That is,

Sj ∩
∑
i6=j

Si = {~0}

and the sum is direct, i.e. V =
⊕

i∈I Si, proving 1. �
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4 Linear Transformations

As with linear transformations between Rn and Rm, so with linear transformations
L(V,W ) between vector spaces V and W over the same field F = R or C:

Definition 4.1 If V and W are vector spaces over the same field F = R or C, the
type of function T : V → W which preserves the algebraic vector properties of V in
W is called a linear transformation. Namely, T is linear if for all vectors u, v ∈ V
and all scalars c ∈ F we have

T (u+ v) = T (u) + T (v)

T (cv) = cT (v)

The set of all linear transformations is denoted

L(V,W )

and acquires itslef the structure of a vector space under pointwise addition and scalar
multiplication,

(S + T )(v)
def
= S(v) + T (v)

(cT )(v)
def
= cT (v)

Prove this as an exercise! The linear transformations from V to itself are called linear
operators and are denoted

L(V )

Linear transformations come in different shapes and sizes. There are the one-to-one
or injective linear transformations, which will be characterized by having their null
space trivial, there are the onto or surjective ones, and there are the invertible or
bijective ones, which we will call isomorphisms and which are both one-to-one and
onto. The set of all isomorphisms between vector spaces V and W is denoted here

Isom(V,W ) = {T ∈ L(V,W ) | T is invertible}

Whenver there exists an isomorphism between two different vector spaces V and W ,
we say that the vector spaces are isomorphic, and sometimes denote this by

V ∼= W
def⇐⇒ there exists some T ∈ Isom(V,W )

The set of all isomorphisms from V to itself is a group, called the general linear
group of V , and denoted

GL(V ) = {T ∈ L(V ) | T is invertible} �

31



Definition 4.2 There are two subspaces associated to any linear transformation T
in L(V,W ), its kernel or null space

kerT or N(T )
def
= {v ∈ V | T (v) = ~0 ∈W}

a subspace of V , and its image or range, the set of achieved w-values,

imT or R(T )
def
= {w ∈W | w = T (v) for some v ∈ V }

a subspace of W . The dimensions of each have names, and become important mea-
sures of the behavior of T : the nullity is the dimension of the kernel/null space, and
the rank is the dimension of the image/range:

null(T )
def
= dim(kerT )

rank(T )
def
= dim(imT )

�

5 Basic Properties of Linear Transformations

Theorem 5.1 Let V and W be vector spaces over the same field F = R or C, and
let T ∈ L(V,W ). Then kerT is a subspace of V and imT is a subspace of W . �

Exercise 5.2 Prove this theorem. �

Theorem 5.3 If V and W are vector spaces and β = {vi | i ∈ I} is a basis for V ,
then for any T ∈ L(V,W ) we have im(T ) = span(T (β)). �

Exercise 5.4 Prove this theorem. �

Theorem 5.5 (Any Linear Transformation Is Defined by Its Action on a
Basis) Let V and W be vector spaces over the same field F . If β = {vi | i ∈ I}
is a basis for V , then we can define a unique linear transformation T ∈ L(V,W )
by arbitrarily specifying the w-values on β, wi = T (vi) ∈ W , and extending T by
linearity, i.e. specifying that for all a1, . . . , an ∈ F our T satisfy

T (a1v1 + · · ·+ anvn)
def
= a1T (v1) + · · ·+ anT (vn)

def
= a1w1 + · · ·+ anwn �

Exercise 5.6 Prove this theorem. �

Theorem 5.7 Let V,W,Z be vector spaces over the same field F . If T ∈ L(V,W )
and U ∈ L(W,Z), then U ◦ T ∈ L(V,Z). �
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Exercise 5.8 Prove this theorem. �

Theorem 5.9 If V and W are vector spaces over F , then L(V,W ) is a vector space
over F under pointwise addition and scalar multiplication of functions (see Definition
4.1). �

Exercise 5.10 Prove this theorem. �

Theorem 5.11 (Invertibility) Let V,W,Z be vector spaces over the same field F .
If T ∈ Isom(V,W ) and U ∈ Isom(W,Z) are isomorphisms, then

(1) T−1 is linear, T−1 ∈ L(W,V ).

(2) (T−1)−1 = T , and hence T−1 ∈ Isom(W,V ).

(3) (U ◦ T )−1 = T−1 ◦ U−1 ∈ Isom(Z, V ). �

Exercise 5.12 Prove this theorem. �

Theorem 5.13 (Injectivity 1) If V and W are vector spaces over the same field
F and T ∈ L(V,W ), then T is injective iff ker(T ) = {0}. �

Exercise 5.14 Prove this theorem. �

Theorem 5.15 (Injectivity 2) Let V and W be vector spaces over the same field
and S ⊆ V . Then for any T ∈ L(V,W ),

(1) T is one-to-one iff it carries linearly independent sets into linearly independent
sets.

(2) If T is one-to-one and S ⊆ V , then S is linearly independent in V iff T (S) is
linearly independent in W . �

Exercise 5.16 Prove this theorem. �

Theorem 5.17 If V and W are vector spaces over the same field F and T ∈ Isom(V,W ),
then for any subset S of V we have

(1) V = span(S) iff W = span(T (S)).

(2) S is linearly independent in V iff T (S) is linearly independent in W .

(3) S is a basis for V iff T (S) is a basis for W . �

Exercise 5.18 Prove this theorem. �
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Theorem 5.19 (Isomorphisms Preserve Bases) If V and W are vector spaces
over the same field F and β is a basis for V , then

T ∈ Isom(V,W ) ⇐⇒ T (β) is a basis for W

wherever β is a basis

for V

�

Exercise 5.20 Prove this theorem. �

Theorem 5.21 (Isomorphisms Preserve Dimension) If V and W are vector sp-
aces over the same field F , then

V ∼= W ⇐⇒ dimV = dimW

Proof : If V ∼= W , then there is some T ∈ Isom(V,W ), so if β is a basis for V , then
by the last theorem T (β) is a basis for W , and dim(V ) = |β| = |T (β)| = dim(W ).
Conversely, if dim(V ) = |β| = |γ| = dim(W ), where γ is a basis for W , then we
can take any bijection T : β → γ and extend it to V by linearity, thereby defining
a unique linear transformation T ∈ L(V,W ) by Theorem 5.5. Moreover, T is an
isomorphism because it is surjective, on account of imT = span(T (β)) = W , and
injective because ker(T ) = {~0} (because T (β) is linearly independent, so if v ∈ kerT
then ~0 = T (v) = T (

∑
j ajvj) =

∑
j ajT (vj) implies all aj = 0, and so v = ~0), therefore

V ∼= W . �

Corollary 5.22 If V and W are vector spaces over the same field and T ∈ L(V,W ),
then

dimV < dimW =⇒ T cannot be onto

dimV > dimW =⇒ T cannot be one-to-one
�

Corollary 5.23 If V is an n-dimensional vector space over F , then

V ∼= Fn

If κ is any cardinal number, β a set of cardinality κ and V is a κ-dimensional vector
space over F , then

V ∼= (F β)0

where (F β)0
def
= {all f : β → F taking on only finitely many nonzero values}.

Proof : This is a result of the fact that dim(Fn) = n and dim
(
(F β)0

)
= κ, since a

basis for (F β)0 is B = {δi : β → F | δi(vj) = δij , i ∈ I}, along with the previous
theorem. Here, δij is the Kronecker delta, which is defined by δij = 1 if i = j and 0
otherwise. �
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The last corollary, 5.23, brings us to the link between Fn = Rn or Cn and any abstract
or other finite-dimensional vector space V of the same dimension.

Definition 5.24 Denote the set of all bases for the n-dimensional space V by

Vn(V )

This is sometimes called the Stiefel manifold of bases or frames, and is indeed
a manifold in the sense of differential geometry. Importantly, it is in one-to-one
correspondence with the set of isomorphisms Isom(V, Fn), a theorem to be proved
below.

Definition 5.25 Let V be an n-dimensional vector space over F = R or C. For each
basis β = (b1, . . . , bn) ∈ Vn(V ) we define an isomorphism by means of Theorems 5.5
and 5.19, the β-coordinate map

ϕβ ∈ Isom(V, Fn)

by defining it on β,

ϕβ(bi)
def
= ei

then extending it by linearity. Then, for any v =
∑n

i=1 aibi ∈ V , with coordinates
ai ∈ F ,

ϕβ(v) = ϕβ

( n∑
i=1

aibi

)
def
=

n∑
i=1

aiϕ(bi) =

n∑
i=1

aiei =

a1...
an

 def
= [v]β �

We now wish to prove the following statement:

Every basis for V defines a unique isomorphism between V
and Fn, and conversely every isomorphism between V and Fn

corresponds to a unique basis for V .

but we’ll do it rigorously, with the notation we set up above.

Theorem 5.26 Let V be an n-dimensional vector space over F = R or C. Then
there is a bijective function (a ‘one-to-one correspondence’)

ϕ : Vn(V )→ Isom(V, Fn)

given by

ϕ(β) = ϕβ

That is, ϕ gives to each basis β its β-coordinate map, and by this means describes all
isomorphisms to Fn.
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Proof : Since each ϕβ lies in Isom(V, Fn), we see that the range of ϕ is contained
in Isom(V, Fn). It remains to show that ϕ is one-to-one and onto, which mean,
respectively,

(1) ϕβ = ϕγ =⇒ β = γ

(2) Every isomorphism T ∈ Isom(V, Fn) is of the form T = ϕβ for some β ∈ Vn(V )

Let us begin with (2): Choose T ∈ Isom(V, Fn), and use Theorem 5.11 to observe
that T−1 ∈ Isom(Fn, V ), which by Theorem 5.19 means that

β
def
= T−1(σ), that is each bi

def
= T−1(ei)

is a basis for V , β ∈ Vn(V ). We then note with gladness that

T (bi) = ei = ϕβ(bi)

for it means T and ϕβ agree on a basis β ∈ Vn(V ). And because we remember

Theorem 5.7, we conclude that T = ϕβ = ϕ(β) —this means, of course, that ϕ is
onto.

Let us now show (1): Suppose that ϕ(β) = ϕ(γ), i.e. that ϕβ = ϕγ for β, γ ∈ Vn(V ).
Then, since they are the same function, they will agree on each basis vector,

ϕβ(bi) = ei = ϕγ(bi) and ϕβ(ci) = ei = ϕγ(ci)

Using their invertibility we conclude that

ci = ϕ−1γ (ei) = ϕ−1β (ei) = bi

so β = γ . �

6 Rank and Nullity

Lemma 6.1 If V and W are vector spaces over the same field F and T ∈ L(V,W ),
then any complement of the kerT in V is isomorphic to imT in W ,

V = kerT ⊕ (kerT )c =⇒ (kerT )c ∼= imT

where (kerT )c is any complement of kerT in V .

Proof : By Theorem 2.15 dimV = dim kerT + dim(kerT )c. Let

T c = T |(kerT )c : (kerT )c → imT

denote the restriction of T to (kerT )c and note that T is injective by Theorem 5.1
because by definition of a direct sum

kerT c = kerT ∩ kerT c = {0}
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Moreover T c is surjective because T c(V ) = T (V ) = imT : first we obviously have
T c(V ) ⊆ imT , while for the reverse inclusion suppose v ∈ imT . Then by Theorem
2.17 there are unique s ∈ kerT and t ∈ (kerT )c such that v = s+ t, which means

T (v) = T (s+ t) = T (s) +��
�*0

T (t) = T (s) = T c(s) ∈ T c(V )

This concludes the demonstration that imT = T c(V ) and thus that T c is surjective,
so that T c is an isomorphism, whence

(kerT )c ∼= imT �

Theorem 6.2 (Rank-Nullity Theorem) If V and W are vector spaces over the
same field F and T ∈ L(V,W ), then

dimV = rankT + nullT

Proof : By the lemma and we have (kerT )c ∼= imT , which by the previous theorem
implies dim(kerT )c = dim imT = rankT , while by Theorem 2.15 V = ker(T ) ⊕
ker(T )c implies

dim(V ) = dim kerT + dim(kerT )c

= dim kerT + dim imT

= nullT + rankT

which completes the proof. �

Corollary 6.3 Let V and W are vector spaces over the same field F and consider
any linear transformation in T ∈ L(V,W ). If dimV = dimW , then the following are
equivalent:

(1) T is one-to-one.

(2) T is onto.

(3) rankT = dimV

Proof : By the Rank-Nullity Theorem, rankT + nullT = dim(V ) and some other
recent theorems we have

T is 1-1
Thm 2.17⇐⇒ kerT = {0}
Thm 5.13⇐⇒ nullT = 0

RN⇐⇒ dim imT = rankT = dimV
hyp
= dimW

Thm 5.21⇐⇒ imT = W.

⇐⇒ T is onto

which completes the proof. �
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