Color Scheme: Blue problems are graded, orange and red are not. In fact, don't turn in orange and red ones, but you should try to solve them for yourselves, as exercises.

New groups for this homework:

(1) Yiting Song, Elliot Spears, Aaron Mutchler
(2) Rod Jafari, Baraka Kombe-Jarvis, Michelle Maclennan
(3) Alexa Graffeo, Nathan Lowe, Jade Vanausdall
(4) Tristan Hanna, Alexander Straiting, Ahmed Alenezi
(5) Aaron Hong, John Vander Dussen, Yi Xu
(6) Brady Itkin, Bryan Nelson

Problems:

- (1) Prove that if $A \in \operatorname{GL}(n, \mathbb{R})$, then A will take any basis $\beta=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ for \mathbb{R}^{n} to some other basis $A \beta:=\left(A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{n}\right)$ for \mathbb{R}^{n}. (Compare with Exercise 16 in Section 4.7.)
(2) Prove the converse, that if $A \in M_{n}(\mathbb{R})$ will take any basis β for \mathbb{R}^{n} to another basis $A \beta$, then $A \in \operatorname{GL}(n, \mathbb{R})$. [Hint: Consider ker A.] (Also, compare with Exercise 15 in Section 4.7.)
(3) Consider the standard basis $\beta=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ for \mathbb{R}^{3} and the mathrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 0 \\ 6 & 0 & 0\end{array}\right)$. Use the previous exercises to show that the column vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ of A form a basis for \mathbb{R}^{3}. Do the rows $\overrightarrow{A_{1}}, \overrightarrow{A_{2}}, \overrightarrow{A_{3}}$ also form a basis?
- Section 5.1: 17, 19, 6, 7, 13, 14, 16, 30ab
- Section 4.7: 2b, 14, 6, 8 ab
- Section 5.2: 7ab, 14 (this is the Riesz Representation Theorem), 3de, 20, 21, 22
- Section 5.3: 6, 10, 8, 14, 16
- Section 5.4: 4ab, 5ab, 8 a

