Homework 6

Color Scheme: Blue problems are graded, orange and red are not. In fact, don't turn in orange and red ones, but you should try to solve them for yourselves, as exercises.

New groups for this homework:

- (1) Yiting Song, Elliot Spears, Aaron Mutchler
- (2) Rod Jafari, Baraka Kombe-Jarvis, Michelle Maclennan
- (3) Alexa Graffeo, Nathan Lowe, Jade Vanausdall
- (4) Tristan Hanna, Alexander Straiting, Ahmed Alenezi
- (5) Aaron Hong, John Vander Dussen, Yi Xu
- (6) Brady Itkin, Bryan Nelson

Problems:

I.

- Let $p(x) = -1 + x^2$, $q(x) = x + x^2 \in \mathcal{P}_2$.
 - Prove that the dimension of P₂ is 3 by showing that ρ = {1, x, x²} is a basis for P₂.
 Show that the set S = {p,q} is linearly independent in P₂.
 - (2) Show that S is not a spanning set by exhibiting a polynomial $r(x) \in \mathcal{P}_2 \setminus \text{span}(S)$.
 - (4) Extend S to a basis $\beta = \{p, q, r\}$ for \mathcal{P}_2 , and make sure to prove all your claims!
- This is a modified version of problem 5 in Section 4.4. Let

$$S = \left\{ \begin{pmatrix} 1 & -2\\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 2\\ -6 & 1 \end{pmatrix}, \begin{pmatrix} 4 & -1\\ -5 & 2 \end{pmatrix}, \begin{pmatrix} 3 & -3\\ 0 & 0 \end{pmatrix} \right\} \subseteq M_2(\mathbb{R})$$

and let us label the four matrices A_1 , A_2 , A_3 , A_4 , and write O for the zero matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

- (5) Show that S is linearly dependent by finding scalars a₁, a₂, a₃, a₄ ∈ ℝ, not all 0, such that ∑_{i=1}⁴ a_iA_i = O. Use these to write A₄ as a linear combination of A₁, A₂ and A₃.
 (6) Find a smaller subset β ⊆ S of S which is linearly independent and satisfies span(β) = span(S). This is a basis for span(S). What is the dimension of span(S)?
- Section 4.4: 10 (In fact, show that more generally $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^n$ are linearly independent iff det $(\mathbf{v}_1 \cdots \mathbf{v}_n) \neq 0$), where the vectors are considered as columns.), 16, 20b, 7ab, 23
- Section 4.5: 6abc, 7, 14, 15acd, 4bc, 8ab,
- Section 4.6: 14ab, 20, 19, 21