Homework 6

Color Scheme: Blue problems are graded, orange and red are not. In fact, don't turn in orange and red ones, but you should try to solve them for yourselves, as exercises.

New groups for this homework:

(1) Yiting Song, Elliot Spears, Aaron Mutchler
(2) Rod Jafari, Baraka Kombe-Jarvis, Michelle Maclennan
(3) Alexa Graffeo, Nathan Lowe, Jade Vanausdall
(4) Tristan Hanna, Alexander Straiting, Ahmed Alenezi
(5) Aaron Hong, John Vander Dussen, Yi Xu
(6) Brady Itkin, Bryan Nelson

Problems:

- Let $p(x)=-1+x^{2}, q(x)=x+x^{2} \in \mathcal{P}_{2}$.
(1) Prove that the dimension of \mathcal{P}_{2} is 3 by showing that $\rho=\left\{1, x, x^{2}\right\}$ is a basis for \mathcal{P}_{2}.
(2) Show that the set $S=\{p, q\}$ is linearly independent in \mathcal{P}_{2}.
(3) Show that S is not a spanning set by exhibiting a polynomial $r(x) \in \mathcal{P}_{2} \backslash \operatorname{span}(S)$.
(4) Extend S to a basis $\beta=\{p, q, r\}$ for \mathcal{P}_{2}, and make sure to prove all your claims!
- This is a modified version of problem 5 in Section 4.4. Let

$$
S=\left\{\left(\begin{array}{rr}
1 & -2 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
3 & 2 \\
-6 & 1
\end{array}\right),\left(\begin{array}{rr}
4 & -1 \\
-5 & 2
\end{array}\right),\left(\begin{array}{rr}
3 & -3 \\
0 & 0
\end{array}\right)\right\} \subseteq M_{2}(\mathbb{R})
$$

and let us label the four matrices $A_{1}, A_{2}, A_{3}, A_{4}$, and write O for the zero matrix $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
(5) Show that S is linearly dependent by finding scalars $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{R}$, not all 0 , such that $\sum_{i=1}^{4} a_{i} A_{i}=O$. Use these to write A_{4} as a linear combination of A_{1}, A_{2} and A_{3}.
(6) Find a smaller subset $\beta \subseteq S$ of S which is linearly independent and satisfies $\operatorname{span}(\beta)=$ $\operatorname{span}(S)$. This is a basis for $\operatorname{span}(S)$. What is the dimension of $\operatorname{span}(S)$?

- Section 4.4: 10 (In fact, show that more generally $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ are linearly independent iff $\operatorname{det}\left(\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right) \neq 0$), where the vectors are considered as columns.), 16, 20b, 7ab, 23
- Section 4.5: 6abc, 7, 14, 15acd, 4bc, 8ab,
- Section 4.6: 14ab, 20, 19, 21

