## Solutions to Linear Algebra Practice Midterm Summer 2011

1. (a) Let $x_{2}=t$, then $x_{1}=-2 t$. Since $x_{3}=x_{4}=x_{5}=0$, all solutions have the form $\mathbf{x}=(-2 t, t, 0,0,0)=t(-2,1,0,0,0)$, so
$\operatorname{ker} A=\operatorname{span}\left(\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]\right)$
(b) By looking at $\operatorname{rref}(A)$ we know that $\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}$ are linearly independent and form a basis for $\operatorname{im} A$, so

$$
\operatorname{im} A=\operatorname{span}\left(\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}\right)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
4 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
2 \\
9
\end{array}\right],\left[\begin{array}{c}
0 \\
6 \\
5 \\
10
\end{array}\right]\right)=\mathbb{R}^{4}
$$

(c) Looking at $\operatorname{rref}([A \mid \mathbf{b}])$ we see right away that $x_{3}=-18, x_{4}=16$ and $x_{5}=-16$. Also, $x_{1}+2 x_{2}=27$. Pick $x_{1}$, say $x_{1}=1$, then $x_{2}=13$, and one solution, then, is

$$
\mathbf{s}=\left[\begin{array}{r}
1 \\
13 \\
-18 \\
16 \\
-16
\end{array}\right]
$$

(d) We know that the solution set $K$ is of the form $K=\mathbf{s}+\operatorname{ker} A$, so

$$
K=\left[\begin{array}{r}
1 \\
13 \\
-18 \\
16 \\
-16
\end{array}\right]+\operatorname{span}\left(\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{r}
1 \\
13 \\
-18 \\
16 \\
-16
\end{array}\right]+t\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

(e) $\mathbf{s}_{2}=\left[\begin{array}{r}1 \\ 13 \\ -18 \\ 16 \\ -16\end{array}\right]+3\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{r}-5 \\ 16 \\ -18 \\ 16 \\ -16\end{array}\right]$. Indeed,

$$
A \mathbf{s}_{2}=\left[\begin{array}{lllll}
1 & 2 & 3 & 2 & 0 \\
4 & 8 & 1 & 1 & 6 \\
3 & 6 & 1 & 2 & 5 \\
2 & 4 & 1 & 9 & 10
\end{array}\right]\left[\begin{array}{r}
-5 \\
16 \\
-18 \\
16 \\
-16
\end{array}\right]=\left[\begin{array}{c}
-5+32-54+32 \\
-20+128-18+16-96 \\
-15+96-18+32-80 \\
-10+64-18+144-160
\end{array}\right]=\left[\begin{array}{c}
5 \\
10 \\
15 \\
20
\end{array}\right]
$$

2. Note, this is only true for $n \geq 2$. Suppose $A \in \mathbb{R}^{n \times n}, n \geq 2$, were invertible, so that $A^{-1}$ existed. Then

$$
A=A I_{n}=A\left(A A^{-1}\right)=(A A) A^{-1}=A^{2} A^{-1}=A A^{-1}=I_{n}
$$

But $I_{n}$ has zero entries if $n \geq 2$.
3. This is not always true for matrices, because $A B$ does not necessarily equal $B A$, and so $(A+B)^{2}=A^{2}+A B+B A+B^{2}$ does not always equal $A^{2}+2 A B+B^{2}$. For example, if $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then

$$
(A+B)^{2}=\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)^{2}=\left[\begin{array}{ll}
1 & 3 \\
4 & 4
\end{array}\right]^{2}=\left[\begin{array}{ll}
13 & 15 \\
20 & 28
\end{array}\right]
$$

while

$$
\begin{aligned}
A^{2}+2 A B+B^{2} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{2}+2\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]^{2} \\
& =\left[\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right]+\left[\begin{array}{ll}
4 & 2 \\
8 & 6
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
12 & 12 \\
23 & 29
\end{array}\right]
\end{aligned}
$$

4. Let $A=\left[\begin{array}{lll}2 & 4 & 8 \\ 4 & 5 & 1 \\ 7 & 9 & 3\end{array}\right]$.
(a) Let's row-reduce $[A \mid \mathbf{b}]$, with $\mathbf{b}$ from part (b), because then we'll get $\operatorname{rref}(A)$ and $\operatorname{rref}([A \mid \mathbf{b}])$ in one go. After some work, we get

$$
\operatorname{rref}([A \mid \mathbf{b}])=\left[\begin{array}{rrrr}
1 & 0 & -6 & 1 \\
0 & 1 & 5 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From just $\operatorname{rref}(A)$ we get, by letting $z=t$, that $x=6 t$ and $y=-5 t$, which implies

$$
\operatorname{ker} A=\left\{\left.t\left[\begin{array}{r}
6 \\
-5 \\
1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}=\operatorname{span}\left(\left[\begin{array}{r}
6 \\
-5 \\
1
\end{array}\right]\right)
$$

The image of $A$ is easy, we just read off the linearly independent columns of $A$ from those of $\operatorname{rref}(A)$, namely the first two. Thus,

$$
\operatorname{im} A=\operatorname{span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)=\operatorname{span}\left(\left[\begin{array}{l}
2 \\
4 \\
7
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
9
\end{array}\right]\right)
$$

(b) To get all solutions we merely need to find one, then add it to ker $A$. Well, from $\operatorname{rref}([A \mid \mathbf{b}])$ we get that

$$
\begin{aligned}
& x-6 z=1 \\
& y+5 z=1
\end{aligned}
$$

Let's make it as easy as possible, let $z=0$. Then $x=y=1$, and one solution is $\mathbf{s}=(1,1,0)$, and so the entire solution set is

$$
K=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\operatorname{ker} A=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\operatorname{span}\left(\left[\begin{array}{r}
6 \\
-5 \\
1
\end{array}\right]\right)
$$

5. Let $B$ be the matrix whose columns are the basis vectors in $\beta, B=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$. We know that $\mathbf{x}=B[\mathbf{x}]_{\beta}$, from which it follows that $[\mathbf{x}]_{\beta}=B^{-1} \mathbf{x} . B^{-1}$ is easy to find, just use the formula $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$. Then,

$$
[\mathbf{x}]_{\beta}=B^{-1} \mathbf{x}=\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{r}
-2 \\
5
\end{array}\right]=\left[\begin{array}{r}
-9 \\
7
\end{array}\right]
$$

It's easy to check that indeed $\left[\begin{array}{r}-2 \\ 5\end{array}\right]=-9\left[\begin{array}{l}1 \\ 1\end{array}\right]+7\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
6. Let $B$ be the matrix whose columns are the basis vectors in $\beta, B=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then $B^{-1}=$ $\left[\begin{array}{rr}0 & 1 \\ 1 & -1\end{array}\right]$, so that

$$
\left[T_{A}\left(\mathbf{e}_{1}\right)\right]_{\beta}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{\beta}=B^{-1} \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / \sqrt{2} \\
0
\end{array}\right]
$$

Similarly,

$$
\left[T_{A}\left(\mathbf{e}_{2}\right)\right]_{\beta}=\left[\begin{array}{c}
1 / \sqrt{2} \\
-\sqrt{2}
\end{array}\right]
$$

and therefore

$$
\left[T_{A}\right]_{\rho, \beta}=\left[\begin{array}{ll}
{\left[T_{A}\left(\mathbf{e}_{1}\right)\right]_{\beta}} & {\left[T_{A}\left(\mathbf{e}_{2}\right)\right]_{\beta}}
\end{array}\right]=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & -\sqrt{2}
\end{array}\right]
$$

