Solutions to Linear Algebra Practice Midterm Summer 2011

Т

1. (a) Let $x_2 = t$, then $x_1 = -2t$. Since $x_3 = x_4 = x_5 = 0$, all solutions have the form $\mathbf{x} = (-2t, t, 0, 0, 0) = t(-2, 1, 0, 0, 0)$, so

(b) By looking at $\operatorname{rref}(A)$ we know that $\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5$ are linearly independent and form a basis for $\operatorname{im} A$, so

$\operatorname{im} A = \operatorname{span}(\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5) = \operatorname{span}$	$\mathbf{n}\left(\begin{bmatrix}1\\4\\3\\2\end{bmatrix},\begin{bmatrix}3\\1\\1\\1\end{bmatrix},\begin{bmatrix}2\\1\\2\\9\end{bmatrix},\begin{bmatrix}0\\6\\5\\10\end{bmatrix}\right) = \mathbb{R}$
---	--

(c) Looking at $\operatorname{rref}([A|\mathbf{b}])$ we see right away that $x_3 = -18$, $x_4 = 16$ and $x_5 = -16$. Also, $x_1 + 2x_2 = 27$. Pick x_1 , say $x_1 = 1$, then $x_2 = 13$, and one solution, then, is

(d) We know that the solution set K is of the form $K = \mathbf{s} + \ker A$, so

$$\begin{aligned} \left| K = \begin{bmatrix} 1\\13\\-18\\16\\-16 \end{bmatrix} + \text{span} \left(\begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix} \right) = \left\{ \begin{bmatrix} 1\\13\\-18\\16\\-16 \end{bmatrix} + t \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix} \middle| t \in \mathbb{R} \right\} \end{aligned} \right| \\ (e) \quad \left| \mathbf{s}_2 = \begin{bmatrix} 1\\13\\-18\\16\\-16 \end{bmatrix} + 3 \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} -5\\16\\-18\\16\\-16 \end{bmatrix} \right|. \text{ Indeed,} \\ A\mathbf{s}_2 = \begin{bmatrix} 1&2&3&2&0\\4&8&1&1&6\\3&6&1&2&5\\2&4&1&9&10 \end{bmatrix} \begin{bmatrix} -5\\16\\-18\\16\\-16 \end{bmatrix} = \begin{bmatrix} -5+32-54+32\\-20+128-18+16-96\\-15+96-18+32-80\\-10+64-18+144-160 \end{bmatrix} = \begin{bmatrix} 5\\10\\15\\20 \end{bmatrix} \end{aligned}$$

2. Note, this is only true for $n \ge 2$. Suppose $A \in \mathbb{R}^{n \times n}$, $n \ge 2$, were invertible, so that A^{-1} existed. Then

$$A = AI_n = A(AA^{-1}) = (AA)A^{-1} = A^2A^{-1} = AA^{-1} = I_n$$

But I_n has zero entries if $n \ge 2$.

3. This is not always true for matrices, because AB does not necessarily equal BA, and so $(A+B)^2 = A^2 + AB + BA + B^2$ does not always equal $A^2 + 2AB + B^2$. For example, if $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then $(A+B)^2 = \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right)^2 = \begin{bmatrix} 1 & 3 \\ 4 & 4 \end{bmatrix}^2 = \begin{bmatrix} 13 & 15 \\ 20 & 28 \end{bmatrix}$

$$(A+B)^2 = \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix}$$

while

$$A^{2} + 2AB + B^{2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{2} + 2\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{2}$$
$$= \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 8 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 12 & 12 \\ 23 & 29 \end{bmatrix}$$

- 4. Let $A = \begin{bmatrix} 2 & 4 & 8 \\ 4 & 5 & 1 \\ 7 & 9 & 3 \end{bmatrix}$.
 - (a) Let's row-reduce $[A|\mathbf{b}]$, with **b** from part (b), because then we'll get rref(A) and rref($[A|\mathbf{b}]$) in one go. After some work, we get

$$\operatorname{rref}([A|\mathbf{b}]) = \begin{bmatrix} 1 & 0 & -6 & 1\\ 0 & 1 & 5 & 1\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

From just $\operatorname{rref}(A)$ we get, by letting z = t, that x = 6t and y = -5t, which implies

$$\ker A = \left\{ t \begin{bmatrix} 6\\-5\\1 \end{bmatrix} \middle| t \in \mathbb{R} \right\} = \operatorname{span} \left(\begin{bmatrix} 6\\-5\\1 \end{bmatrix} \right) \right|$$

The image of A is easy, we just read off the linearly independent columns of A from those of rref(A), namely the first two. Thus,

$$\operatorname{im} A = \operatorname{span}(\mathbf{a}_1, \mathbf{a}_2) = \operatorname{span}\left(\begin{bmatrix} 2\\4\\7 \end{bmatrix}, \begin{bmatrix} 4\\5\\9 \end{bmatrix} \right)$$

(b) To get all solutions we merely need to find one, then add it to ker A. Well, from $rref([A|\mathbf{b}])$ we get that

$$\begin{aligned} x - 6z &= 1\\ y + 5z &= 1 \end{aligned}$$

Let's make it as easy as possible, let z = 0. Then x = y = 1, and one solution is $\mathbf{s} = (1, 1, 0)$, and so the entire solution set is

$$K = \begin{bmatrix} 1\\1\\0 \end{bmatrix} + \ker A = \begin{bmatrix} 1\\1\\0 \end{bmatrix} + \operatorname{span}\left(\begin{bmatrix} 6\\-5\\1 \end{bmatrix} \right)$$

5. Let *B* be the matrix whose columns are the basis vectors in β , $B = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$. We know that $\mathbf{x} = B[\mathbf{x}]_{\beta}$, from which it follows that $[\mathbf{x}]_{\beta} = B^{-1}\mathbf{x}$. B^{-1} is easy to find, just use the formula $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. Then,

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\beta} = B^{-1} \mathbf{x} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} -9 \\ 7 \end{bmatrix}$$

indeed
$$\begin{bmatrix} -2 \\ 5 \end{bmatrix} = -9 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 7 \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

It's easy to check that indeed $\begin{bmatrix} -2\\5 \end{bmatrix} = -9 \begin{bmatrix} 1\\1 \end{bmatrix} + 7 \begin{bmatrix} 1\\2 \end{bmatrix}$

6. Let *B* be the matrix whose columns are the basis vectors in β , $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Then $B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$, so that $[T_A(\mathbf{e}_1)]_{\beta} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\beta} = B^{-1} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} \\ 0 \end{bmatrix}$ Similarly,

 $[T_A(\mathbf{e}_2)]_\beta = \begin{bmatrix} 1/\sqrt{2} \\ -\sqrt{2} \end{bmatrix}$

and therefore

$$[T_A]_{\rho,\beta} = \begin{bmatrix} [T_A(\mathbf{e}_1)]_\beta & [T_A(\mathbf{e}_2)]_\beta \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & -\sqrt{2} \end{bmatrix}$$