Linear Algebra Midterm
 Summer 2011

1. Consider the system of equations

$$
\begin{array}{rlrl}
x_{1}+2 x_{2}+3 x_{3}+2 x_{4} & & =5 \\
4 x_{1}+8 x_{2}+x_{3}+x_{4}+6 x_{5} & =10 \\
3 x_{1}+6 x_{2}+x_{3}+2 x_{4}+5 x_{5} & =15 \\
2 x_{1}+4 x_{2}+x_{3}+9 x_{4}+10 x_{5} & =30
\end{array}
$$

This can be succintly written as $A \mathbf{x}=\mathbf{b}$ and represented in matrix form as $[A \mid \mathbf{b}] \in \mathbb{R}^{4 \times 6}$. Given that

$$
\operatorname{rref}([A \mid \mathbf{b}])=\left[\begin{array}{rrrrrr}
1 & 2 & 0 & 0 & 0 & 27 \\
0 & 0 & 1 & 0 & 0 & -18 \\
0 & 0 & 0 & 1 & 0 & 16 \\
0 & 0 & 0 & 0 & 1 & -16
\end{array}\right]
$$

(a) Find $\operatorname{ker} A$ as a span of vectors. (You'll need to consider $\operatorname{rref}([A \mid \mathbf{0}])$ here.)
(b) Find $\operatorname{im} A$ as a span of vectors.
(c) Find a particular solution \mathbf{s} of the system $A \mathbf{x}=\mathbf{b}$.
(d) Use parts (a) and (c) to find the set of all possible solutions $K=\mathbf{s}+\operatorname{ker} A$, and write this in the form $K=\left\{\mathbf{s}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k} \mid t_{1}, \ldots, t_{k} \in \mathbb{R}\right\}$ where the vectors \mathbf{v}_{i} are the basis vectors of $\operatorname{ker} A$.
(e) Use part (d) with $t_{1}=\cdots=t_{k}=3$ to find a second solution \mathbf{s}_{2} of $A \mathbf{x}=\mathbf{b}$ and verify that this is indeed a solution.
2. Let $A \in \mathbb{R}^{n \times n}$ satisfy $A^{2}=A$. Show that if all entries of A are nonzero, then A is not invertible. [Hint: It's easier to prove the contrapositive of this statement.]
3. If a and b are real numbers, we know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$. If $A, B \in \mathbb{R}^{n \times n}$, is the equation $(A+B)^{2}=A^{2}+2 A B+B^{2}$ still true? If so, prove it, if not, find examples of matrices A and B for which this fails.
4. Let $A=\left[\begin{array}{lll}2 & 4 & 8 \\ 4 & 5 & 1 \\ 7 & 9 & 3\end{array}\right]$.
(a) Find $\operatorname{ker} A$ and $\operatorname{im} A$ as spans of vectors.
(b) Find all solutions of the system $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{c}6 \\ 9 \\ 16\end{array}\right]$.
5. Consider the basis $\beta=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ for \mathbb{R}^{2}. Find the representation $[\mathbf{x}]_{\beta}$ of the vector $\mathbf{x}=\left[\begin{array}{r}-2 \\ 5\end{array}\right]$ in this basis.
6. Let $\rho=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ be the standard basis for \mathbb{R}^{2} and let $\beta=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ be another basis for \mathbb{R}^{2}. If $T_{A} \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ is the counterclockwise rotation through $\pi / 4$, with associated matrix

$$
A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

find the matrix representation $\left[T_{A}\right]_{\rho, \beta}$ of T_{A} in these bases.

