
Linear Algebra Practice Final
Summer 2011

1. Let

A =


3 −1 3 −1 2
1 −1 −1 −2 −1
5 −2 1 −3 3
2 −1 0 −2 1


(a) First,

rref([A|0]) =


1 0 0 0 2 0
0 1 0 0 5 0
0 0 1 0 0 0
0 0 0 1 −1 0


so if we let x5 = t, then x4 = t, x3 = 0, x2 = −5t, and x1 = −2t, so that

x =


−2t
−5t

0
t
t

 = t


−2
−5

0
1
1


whence kerA = span(−2,−5, 0, 1, 1) and a basis for kerA is

β =




−2
−5

0
1
1




(b) To find a particular solution, s, we consider

rref([A|b]) = rref


3 −1 3 −1 2 5
1 −1 −1 −2 −1 2
5 −2 1 −3 3 10
2 −1 0 −2 1 5

 =


1 0 0 0 2 3
0 1 0 0 5 7
0 0 1 0 0 0
0 0 0 1 −1 −3


Make it easy on yourself and let x5 = 0. Then x1 = 3, x2 = 7, x3 = 0 and x4 = −3, so
one solution is this one:

s =


3
7
0
−3

0


Consequently,

K = s + kerA =




3
7
0
−3

0

+ t


−2
−5

0
1
1

 | t ∈ R



1



(c) Well, one solution is s above, and another may be gotten by picking t = 1, say, to get

s2 =


3
7
0
−3

0

+


−2
−5

0
1
1

 =


1
2
0
−2

1


It’s easy to verify that these are indeed solutions of the original system.

2. We know that S is too large, because it contains 5 elements while R3[x] is a 4-dimensional space.
So we will have to reduce it, the question is just by how much. Well, it’s easier to deal with
matrices, so why don’t we represent the vectors in S in the standard basis ρ = {1, x, x2, x3}
for R3[x], and put the resulting column vectors in a matrix:

A =
[
[2 + x+ x2 + 3x3]ρ [4 + 2x+ 4x2 + 6x3]ρ [6 + 3x+ 8x2 + 7x3]ρ [2 + x+ 5x3]ρ [4 + x+ 9x3]ρ

]

=


2 4 6 2 4
1 2 3 1 1
1 4 8 0 0
3 6 7 5 9


Row-reducing A gives

rref(A) =


1 0 0 0 0
0 1 0 2 0
0 0 1 −1 0
0 0 0 0 1


This tells us that the first three columns and the last are linearly independent, so that the first
three and the last polynomials in S are linearly independent. These will form a basis for span
S, since they are linearly independent and span S:

β = {2 + x+ x2 + 3x3, 4 + 2x+ 4x2 + 6x3, 6 + 3x+ 8x2 + 7x3, 4 + x+ 9x3}

3. The problem with A is that cA(x) = det(A− xI2) = det

[
−x 1
0 −x

]
= x2, so λ = 0 is the only

eigenvalue, and it has algebraic multiplicity 2, whereas

dim(E0) = dim(ker(A− 0I)) = dim(ker(A)) = 1

The problem with B is that cB(x) = det(B − xI2) = det

[
−x 1
−1 −x

]
= x2 + 1 doesn’t factor.

That alone is enough, but you’ll also note that B consequently doesn’t even have eigenvalues,
and so doesn’t have eigenvectors, which are needed in any basis that will diagonalize it.

4. Let

A =

 3 1 1
2 4 2
−1 −1 1


Then

cA(x) = det(A− xI3)

= det

3− x 1 1
2 4− x 2
−1 −1 1− x


= −x3 + 8x2 − 20x+ 16

= (−1)(x− 4)(x− 2)2
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so the eigenvalues of A are λ1 = 4 and λ2 = 2, with algebraic multiplicities 1 and 2, respectively.
Let’s find the dimensions of E4 and E2: first,

E4 = ker(A− 4I) = ker

−1 1 1
2 0 2
−1 −1 −3

 = ker

= rref(A−4I)︷ ︸︸ ︷1 0 1
0 1 2
0 0 0


has dimension 1, because the rank of this matrix is 2, and

E2 = ker(A− 2I) = ker

 1 1 1
2 2 2
−1 −1 −1

 = ker

= rref(A−2I)︷ ︸︸ ︷1 0 1
0 0 0
0 0 0


has dimension 2, because the rank of this matrix is 1. Consequently, the dimensions of the
eigenspaces equal the algebraic multiplicities of the corresponding eigenvalues, so A is diago-
nalizable.
To find a basis β for V that diagonalizes A, we merely have to find bases for E4 and E2. This
is easy once we look at rref(A − 4I) and rref(A − 2I). In the first case, letting z = t, we get
that x = −t and y = −2t, so that

E4 = span

−1
−2

1


and similarly with E2, letting y = s and z = t gives that x = −s− t, so thatxy

z

 =

−s− ts
t

 = s

−1
1
0

+ t

−1
0
1


whence

E2 = span

−1
1
0

 ,
−1

0
1


The vectors in these spans are linearly independent, and thus form bases for E4 and E2,
respectively. Joining all three into one basis gives a diagonalizing basis

β =


−1
−2

1

 ,
−1

1
0

 ,
−1

0
1


To see that this is true, we compute:

TA(b1) = Ab1 =

 3 1 1
2 4 2
−1 −1 1

−1
−2

1

 =

−4
−8

4

 = 4

−1
−2

1

 = 4b1

TA(b2) = Ab2 =

 3 1 1
2 4 2
−1 −1 1

−1
1
0

 =

−2
2
0

 = 2

−1
1
0

 = 2b2

TA(b3) = Ab3 =

 3 1 1
2 4 2
−1 −1 1

−1
0
1

 =

−2
0
2

 = 2

−1
0
1

 = 2b3

3



so that

Λ = [TA]β =

4 0 0
0 2 0
0 0 2


5. Expanding along the 4th row (you could also expand along the first column), we get that

f(x) = det


1 1 2 3 4
9 0 2 3 4
9 0 0 3 4
x 1 2 9 1
7 0 0 0 4

 = −xdet(A4,1)+det(A4,2)−2 det(A4,3)+9 det(A4,4)−det(A4,5)

Note that the terms det(A4,j) are constants, so when we take the derivative of f we treat them
as such, and therefore:

f ′(x) = −det(A4,1) = −det


1 2 3 4
0 2 3 4
0 0 3 4
0 0 0 4

 = −1 · 2 · 3 · 4 = −24

6. Let β = (1, x, x2) and β′ = (1 + x+ x2, 1 + x, 1− x2). Then

Mβ′,β =
[
[1 + x+ x2]β [1 + x]β [1− x2]β

]
=

1 1 1
1 1 0
1 0 −1


and therefore

Mβ,β′ = M−1β′,β =

 1 −1 1
−1 2 −1

1 −1 0


Finally,

[2x− 5x2]β′ = Mβ,β′ [2x− 5x2]β =

 1 −1 1
−1 2 −1

1 −1 0

 2
0
−5

 =

−7
9
−2


which means

2x− 5x2 = −7(1 + x+ x2) + 9(1 + x)− 2(1− x2)

7. (a) (AB)Tij = (AB)ji =

n∑
k=1

AjkBki =

n∑
k=1

BkiAjk =

n∑
k=1

(BT )ik(AT )kj = (BTAT )ij

(b) If A is invertible, then there is a matrix A−1 such that AA−1 = A−1A = I, whence by
part (a) of this problem (A−1)TAT = (AA−1)T = IT = I = IT = (A−1A)T = AT (A−1)T .
This shows that AT is invertible, and (A−1)T = (AT )−1.

8. Let A =

[
0 −2
1 3

]
.

(a) cA(x) = det(A − xI2) = det

[
−x −2

1 3− x

]
= x2 − 3x + 2 = (x − 1)(x − 2). Thus λ1 = 1

and λ2 = 2 are the eigenvalues of A. Let’s find the dimensions of their corresponding
eigenspaces:

E1 = ker(A− I2) = ker

[
−1 −2
1 2

]
= ker

[
1 2
0 0

]
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has dimension 1, and

E2 = ker(A− 2I2) = ker

[
−2 −2

1 1

]
= ker

[
1 1
0 0

]
also has dimension 1. Thus, since the dimensions of the eigenspaces equal the algebraic
multiplicities of the corresponding eigenvalues, A is diagonalizable.

(b) First, to find bases for E1 and E2, we parametrize the free, or inner, variable y: for E1

this means letting y = t and so x = −2t, while for E2 this means y = t and x = −t, so
that a basis for E1 is (−2, 1), and a basis for E2 is (−1, 1). Joining these two bases gives
a basis for R2 that diagonalizes A:

β =

{[
−2

1

]
,

[
−1

1

]}
Then an easy calculation shows that Ab1 = b1 and Ab2 = 2b2, so

Λ = [TA]β

[
1 0
0 2

]
Finally, with ρ the standard basis for R2,

M = Mβ,ρ =

[ [
−2

1

]
ρ

[
−1

1

]
ρ

]
=

[
−2 −1

1 1

]
so that

M−1 =

[
−1 −1

1 2

]
and an easy verification shows that A = MΛM−1.

9. detA = −3 , which can be computed by using Gaussian elimination or by cofactor expansion.

10. If A ∈ R5×5 and det(A) = 5, then det(−2A) = (−2)5 detA = −32 · 5 = −160 .
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