Linear Algebra Midterm Summer 2011

1. Consider the following system of four equations in five unknowns:

I.

$3x_1 -$	$x_2 +$	$3x_3 -$	$x_4 +$	$2x_5$	=5
$x_1 - $	$x_2 -$	$x_3 -$	$2x_4$ –	x_5	=2
$5x_1 - $	$2x_2 +$	$x_3 -$	$3x_4 +$	$3x_5$	= 10
$2x_1 - $	x_2	_	$2x_4 +$	x_5	= 5

(a) If A is the coefficient matrix of the system, find a basis β for ker A. (You'll need to consider rref([A|0]) here.)

(b) Find the set of all solutions $K = \mathbf{s} + \ker A = \mathbf{s} + \operatorname{span}(\beta)$.

(c) Use the previous result to find two distinct solutions, and verify that they solve the system.

2. Let $S = \{2 + x + x^2 + 3x^3, 4 + 2x + 4x^2 + 6x^3, 6 + 3x + 8x^2 + 7x^3, 2 + x + 5x^3, 4 + x + 9x^3\}$ and let V = span(S) be the subspace of $\mathbb{R}_3[x]$ generated by S. Find the dimension of V by reducing (if necessary) S to a basis β for V. 3. Show that the matrices $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ are not diagonalizable.

4. Let

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{bmatrix}$$

Show that A is diagonalizable, then find a basis β for \mathbb{R}^3 such that the associated operator $T_A \in \mathcal{L}(\mathbb{R}^3)$ has a diagonal matrix representation $[T_A]_\beta$ with respect to β , and finally compute $[T_A]_\beta$.

5. Find the derivative of the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 9 & 0 & 2 & 3 & 4 \\ 9 & 0 & 0 & 3 & 4 \\ x & 1 & 2 & 9 & 1 \\ 7 & 0 & 0 & 0 & 4 \end{bmatrix}$$

6. Let $\beta = (1, x, x^2)$ and $\beta' = (1 + x + x^2, 1 + x, 1 - x^2)$ be two ordered bases for $\mathbb{R}_2[x]$. Find $M_{\beta',\beta}$, the matrix changing β' coordinates into standard β coordinates, and find its inverse $M_{\beta',\beta}^{-1} = M_{\beta,\beta'}$. Then use the result to express the polynomial $2x - 5x^2$ in β' coordinates.

7. (a) Let $A, B \in \mathbb{R}^{n \times n}$. Show that $(AB)^T = B^T A^T$. [Hint: Show that the *ij*th elements of each are equal, $(AB)_{ij}^T = (B^T A^T)_{ij}$.]

(b) Show that if $A \in \mathbb{R}^{n \times n}$ is invertible, then A^T is also invertible, and $(A^T)^{-1} = (A^{-1})^T$.

8. Let
$$A = \begin{bmatrix} 0 & -2 \\ 1 & 3 \end{bmatrix}$$
.
(a) Show that A is diagonalizable.

(b) Find the diagonal matrix $\Lambda = [T_A]_{\beta}$, and find an invertible matrix M such that $A = M\Lambda M^{-1}$. Compute this product explicitly to verify the equation.

9. Compute $\det A$, where

A =	0	2	1	3
	1	0	-2	2
	3	-1	0	1
	[-1]	1	2	0

10. Suppose that $A \in \mathbb{R}^{5 \times 5}$ and $\det(A) = 5$. What is $\det(-2A)$?