Linear Algebra Midterm

 Summer 20111. Consider the following system of four equations in five unknowns:

$$
\begin{array}{rlrl}
3 x_{1}- & x_{2}+3 x_{3}-x_{4}+2 x_{5} & =5 \\
x_{1}- & x_{2}- & x_{3}-2 x_{4}-x_{5} & =2 \\
5 x_{1}- & 2 x_{2}+ & x_{3}-3 x_{4}+3 x_{5} & =10 \\
2 x_{1}- & x_{2} & -2 x_{4}+x_{5} & =5
\end{array}
$$

(a) If A is the coefficient matrix of the system, find a basis β for ker A. (You'll need to consider $\operatorname{rref}([A \mid \mathbf{0}])$ here. $)$
(b) Find the set of all solutions $K=\mathbf{s}+\operatorname{ker} A=\mathbf{s}+\operatorname{span}(\beta)$.
(c) Use the previous result to find two distinct solutions, and verify that they solve the system.
2. Let $S=\left\{2+x+x^{2}+3 x^{3}, 4+2 x+4 x^{2}+6 x^{3}, 6+3 x+8 x^{2}+7 x^{3}, 2+x+5 x^{3}, 4+x+9 x^{3}\right\}$ and let $V=\operatorname{span}(S)$ be the subspace of $\mathbb{R}_{3}[x]$ generated by S. Find the dimension of V by reducing (if necessary) S to a basis β for V.
3. Show that the matrices $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$ are not diagonalizable.
4. Let

$$
A=\left[\begin{array}{rrr}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{array}\right]
$$

Show that A is diagonalizable, then find a basis β for \mathbb{R}^{3} such that the associated operator $T_{A} \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ has a diagonal matrix representation $\left[T_{A}\right]_{\beta}$ with respect to β, and finally compute $\left[T_{A}\right]_{\beta}$.
5. Find the derivative of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\left[\begin{array}{lllll}
1 & 1 & 2 & 3 & 4 \\
9 & 0 & 2 & 3 & 4 \\
9 & 0 & 0 & 3 & 4 \\
x & 1 & 2 & 9 & 1 \\
7 & 0 & 0 & 0 & 4
\end{array}\right]
$$

6. Let $\beta=\left(1, x, x^{2}\right)$ and $\beta^{\prime}=\left(1+x+x^{2}, 1+x, 1-x^{2}\right)$ be two ordered bases for $\mathbb{R}_{2}[x]$. Find $M_{\beta^{\prime}, \beta}$, the matrix changing β^{\prime} coordinates into standard β coordinates, and find its inverse $M_{\beta^{\prime}, \beta}^{-1}=M_{\beta, \beta^{\prime}}$. Then use the result to express the polynomial $2 x-5 x^{2}$ in β^{\prime} coordinates.
7. (a) Let $A, B \in \mathbb{R}^{n \times n}$. Show that $(A B)^{T}=B^{T} A^{T}$. [Hint: Show that the $i j$ th elements of each are equal, $(A B)_{i j}^{T}=\left(B^{T} A^{T}\right)_{i j}$.]
(b) Show that if $A \in \mathbb{R}^{n \times n}$ is invertible, then A^{T} is also invertible, and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
8. Let $A=\left[\begin{array}{rr}0 & -2 \\ 1 & 3\end{array}\right]$.
(a) Show that A is diagonalizable.
(b) Find the diagonal matrix $\Lambda=\left[T_{A}\right]_{\beta}$, and find an invertible matrix M such that $A=$ $M \Lambda M^{-1}$. Compute this product explicitly to verify the equation.
9. Compute $\operatorname{det} A$, where

$$
A=\left[\begin{array}{rrrr}
0 & 2 & 1 & 3 \\
1 & 0 & -2 & 2 \\
3 & -1 & 0 & 1 \\
-1 & 1 & 2 & 0
\end{array}\right]
$$

10. Suppose that $A \in \mathbb{R}^{5 \times 5}$ and $\operatorname{det}(A)=5$. What is $\operatorname{det}(-2 A)$?
