Examples and Exercises

0.1 Worked Examples

Example 0.1 In Example 0.20, Matrix Representations, we showed that the linear transformation $T \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ given by $T(x, y)=(x+y, 2 x-y, 3 x+5 y)$, which has a matrix representation with respect to standard bases $\rho_{2}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$ and $\rho_{3}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$

$$
[T]_{\rho_{2}}^{\rho_{3}}=\left[\begin{array}{rr}
1 & 1 \\
2 & -1 \\
3 & 5
\end{array}\right]
$$

has a different matrix representation with respect to the bases $\beta=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=((1,1),(0,-1))$ and $\gamma=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right)=((1,1,1),(1,0,1),(0,0,1))$, namely

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{rr}
1 & 1 \\
1 & -2 \\
6 & -4
\end{array}\right]
$$

We achieved this second representation by computing $\left[T\left(\mathbf{v}_{i}\right)\right]_{\gamma}$, namely, $\left[T\left(\mathbf{v}_{i}\right)\right]_{\gamma}=C^{-1} T\left(\mathbf{v}_{i}\right)$, where

$$
C=\left[\begin{array}{lll}
\mathbf{w}_{1} & \mathbf{w}_{2} & \mathbf{w}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right] \quad \text { so that } \quad C^{-1}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Let

$$
B=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right] \quad \text { so that } \quad B^{-1}=B=\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right]
$$

Show that this representation may also be derived by using Theorem 0.23 of Matrix Representations, namely, by using the relation:

$$
C^{-1}[T]_{\rho_{2}}^{\rho_{3}}=[T]_{\beta}^{\gamma} B^{-1}
$$

Solution: This is easy enough, since $C^{-1}[T]_{\rho_{2}}^{\rho_{3}}=[T]_{\beta}^{\gamma} B^{-1}$ holds iff $C^{-1}[T]_{\rho_{2}}^{\rho_{3}} B=[T]_{\beta}^{\gamma}$, just rightmultiply by B ! Well, let's do this:

$$
\begin{aligned}
{[T]_{\beta}^{\gamma} } & =C^{-1}[T]_{\rho_{2}}^{\rho_{3}} B \\
& =\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
2 & -1 \\
3 & 5
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & -1 \\
1 & 1 \\
8 & -5
\end{array}\right] \\
& =\left[\begin{array}{rr}
1 & 1 \\
1 & -2 \\
6 & -4
\end{array}\right]
\end{aligned}
$$

This verifies the claim of that theorem for this example, and it exemplifies the second method of attack for such a problem.

Example 0.2 If $T \in \mathcal{L}\left(\mathbb{R}_{3}[x], \mathbb{R}_{2}[x]\right)$ is given by $T(f(x))=f^{\prime}(x)$, and $\beta=\left(1, x, x^{2}, x^{3}\right)$ and $\gamma=$ $\left(1, x, x^{2}\right)$ are the standard ordered bases for $\mathbb{R}_{3}[x]$ and $\mathbb{R}_{2}[x]$, respectively, the matrix representation of T is found as follows:

$$
\left.\begin{array}{ll}
T(1)=1^{\prime}=0 & =0 \cdot 1+0 x+0 x^{2} \\
T(x)=x^{\prime}=1 & =1 \cdot 1+0 x+0 x^{2} \\
T\left(x^{2}\right)=\left(x^{2}\right)^{\prime}=2 x & =0 \cdot 1+2 x+0 x^{2} \\
T\left(x^{3}\right)=\left(x^{3}\right)^{\prime}=3 x^{2} & =0 \cdot 1+0 x+3 x^{2}
\end{array}\right\} \quad \Longrightarrow \quad[T]_{\beta}^{\gamma}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

Example 0.3 Let $T \in \mathcal{L}\left(\mathbb{R}_{3}[x], \mathbb{R}_{2}[x]\right)$ be given by $T(f(x))=f^{\prime}(x)$ and let β and γ be the standard ordered bases for $\mathbb{R}_{3}[x]$ and $\mathbb{R}_{2}[x]$, respectively. Verify that

$$
[T(p(x))]_{\gamma}=[T]_{\beta}^{\gamma}[p(x)]_{\beta}
$$

for the polynomial $p(x)=2-4 x+x^{2}+3 x^{3} \in \mathbb{R}_{3}[x]$.
Solution: First, for $p(x)=2-4 x+x^{2}+3 x^{3}$ we have $T(p(x))=p^{\prime}(x)=-4+2 x+9 x^{2}$. Moreover, by Example 0.2 we have

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

and clearly we have

$$
[p(x)]_{\beta}=\left[\begin{array}{r}
2 \\
-4 \\
1 \\
3
\end{array}\right] \quad[T(p(x))]_{\gamma}=\left[p^{\prime}(x)\right]_{\gamma}=\left[\begin{array}{r}
-4 \\
2 \\
9
\end{array}\right]
$$

Consequently,

$$
[T]_{\beta}^{\gamma}[p(x)]_{\beta}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{r}
2 \\
-4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{r}
-4 \\
2 \\
9
\end{array}\right]=[T(p(x))]_{\gamma}
$$

Example 0.4 Let $T \in \mathcal{L}\left(\mathbb{R}^{2 \times 2}, \mathbb{R}^{2 \times 2}\right)$ be given by $T(A)=A^{T}$, and let

$$
B=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

be a basis for $\mathbb{R}^{2 \times 2}$. Verify that $[T(A)]_{B}=[T]_{B}[A]_{B}$, for

$$
A=\left(\begin{array}{rr}
1 & 4 \\
-1 & 6
\end{array}\right)
$$

Solution: First,

$$
[T(A)]_{B}=\left[A^{T}\right]_{B}=\left[\left(\begin{array}{rr}
1 & -1 \\
4 & 6
\end{array}\right)\right]_{B}=\left[1 e_{1}-1 e_{2}+4 e_{3}+6 e_{4}\right]_{B}=\left(\begin{array}{r}
1 \\
-1 \\
4 \\
6
\end{array}\right)
$$

Obviously T is linear, because it is componentwise linear in \mathbb{R}. We next need to determine $[T]_{B}$ and $[A]_{B}$:

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=e_{1}=1 e_{1}+0 e_{2}+0 e_{3}+0 e_{4} \\
T\left(e_{2}\right)=e_{3}=0 e_{1}+0 e_{2}+1 e_{3}+0 e_{4} \\
T\left(e_{3}\right)=e_{2}=0 e_{1}+1 e_{2}+0 e_{3}+0 e_{4} \\
T\left(e_{4}\right)=e_{4}=0 e_{1}+0 e_{2}+0 e_{3}+1 e_{4}
\end{array}\right\} \quad \Longrightarrow \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Consequently

$$
[T]_{B}[A]_{B}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{r}
1 \\
4 \\
-1 \\
6
\end{array}\right)=\left(\begin{array}{r}
1 \\
-1 \\
4 \\
6
\end{array}\right)=[T(A)]_{B}
$$

Example 0.5 Given distinct constants $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$, we can define $n+1$ distinct polynomials that each have all except one of the c_{0}, \ldots, c_{n} as roots, and such that they are linearly independent as vectors in $\mathbb{R}_{n+1}[x]$. This gives us a special basis for $\mathbb{R}_{n+1}[x]$, one which allows the construction of an $n+1$-degree polynomial passing through the points $\left(c_{0}, b_{0}\right), \ldots,\left(c_{n}, b_{n}\right) \in \mathbb{R}^{2}$. The Lagrange polynomials, $\ell_{0}(x), \ldots, \ell_{n}(x) \in \mathbb{R}_{n+1}[x]$ associated with the c_{0}, \ldots, c_{n} are given by

$$
\ell_{i}(x)=\frac{\left(x-c_{0}\right) \cdots\left(x-c_{i-1}\right)\left(x-c_{i+1}\right) \cdots\left(x-c_{n}\right)}{\left(c_{i}-c_{0}\right) \cdots\left(c_{i}-c_{i-1}\right)\left(c_{i}-c_{i+1}\right) \cdots\left(c_{i}-c_{n}\right)}=\prod_{\substack{k=0 \\ k \neq i}}^{n} \frac{x-c_{k}}{c_{i}-c_{k}}
$$

As a consequence of this definition we have that

$$
\ell_{i}\left(c_{j}\right)= \begin{cases}0, & \text { if } i \neq j \tag{0.1}\\ 1, & \text { if } i=j\end{cases}
$$

This property of Lagrange polynomials means that $\beta=\left\{\ell_{0}, \ell_{1}, \ldots, \ell_{n}\right\}$ is a basis for $\mathbb{R}_{n+1}[x]$. As a result, if we specify a set of $n+1$ constants in $b_{0}, b_{1}, \ldots, b_{n} \in \mathbb{R}$, the polynomial

$$
g(x)=\sum_{i=0}^{n} b_{i} \ell_{i}(x)
$$

is the unique polynomial in $\mathbb{R}[x]$ such that $g\left(c_{j}\right)=b_{j}$ for all $j=0,1, \ldots, n$. The process of finding the polynomial $g(x)$ such that $g\left(c_{j}\right)=b_{j}$ for all $j=0,1, \ldots, n$ is called Lagrange interpolation.

This is shown as follows: First, note that $\beta=\left\{\ell_{0}, \ell_{1}, \ldots, \ell_{n}\right\}$ is a linearly independent subset of $\mathbb{R}_{n}[x]$, since if we choose scalars $a_{0}, \ldots, a_{n} \in \mathbb{R}$, and we let $p_{0}(x) \equiv 0$ (the zero polynomial), and if we suppose

$$
\begin{aligned}
a_{0} \ell_{0}(x)+a_{1} \ell_{1}(x)+\cdots+a_{n} \ell_{n}(x) & =p_{0}(x) \\
& =0 \quad \text { for all } x \in \mathbb{R}
\end{aligned}
$$

we have by (0.1)

$$
\begin{aligned}
a_{0} \ell\left(c_{j}\right)+a_{1} \ell_{1}\left(c_{j}\right)+\cdots+a_{n} \ell_{n}\left(c_{j}\right) & =a_{j} \ell_{j}\left(c_{j}\right) \\
& =a_{j} \\
& =0
\end{aligned} \quad \text { for } j=0,1, \ldots, n
$$

so $a_{0}=\cdots=a_{n}=0$ and β is linearly independent. Since $\operatorname{dim}\left(\mathbb{R}_{n}[x]\right)=n+1$, it follows that β is a basis for $\mathbb{R}_{n}[x]$. Consequently, every n-th degree polynomial in $\mathbb{R}_{n}[x]$ is a linear combination of polynomials in β, so that if $g \in \mathbb{R}_{n}[x]$, then $\exists b_{1}, \ldots, b_{n} \in \mathbb{R}$ such that

$$
g=b_{1} \ell_{1}+\cdots+b_{n} \ell_{n}
$$

By (0.1) this means that for $j=1, \ldots, n$

$$
g\left(c_{j}\right)=b_{1} \ell_{1}\left(c_{j}\right)+\cdots+b_{n} \ell_{n}\left(c_{j}\right)=b_{j} \ell\left(c_{j}\right)=b_{j}
$$

so that

$$
\begin{equation*}
g(x)=g\left(c_{0}\right) \ell_{0}(x)+g\left(c_{1}\right) \ell_{1}(x)+\cdots+g\left(c_{n}\right) \ell_{n}(x) \tag{0.2}
\end{equation*}
$$

is the unique representation of g as a linear combination of elements of β. (0.2) is called the Lagrange interpolation formula.

Example 0.6 Find the real polynomial $g(x) \in \mathbb{R}[x]$ of degree at most 2 whose graph contains the points $(1,8),(2,5)$, and $(3,-4)$.

Solution: $(1,8),(2,5),(3,-4) \in G(g) \Longrightarrow g(1)=8, g(2)=5$ and $g(3)=-4$, so that $c_{0}=1, c_{1}=2$, $c_{2}=3, b_{0}=8, b_{1}=5$ and $b_{2}=-4$. Hence

$$
\begin{aligned}
\ell_{0}(x) & =\frac{\left(x-c_{1}\right)\left(x-c_{2}\right)}{\left(c_{0}-c_{1}\right)\left(c_{0}-c_{2}\right)}=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{1}{2}\left(x^{2}-5 x+6\right) \\
\ell_{1}(x) & =\frac{\left(x-c_{0}\right)\left(x-c_{2}\right)}{\left(c_{1}-c_{0}\right)\left(c_{1}-c_{2}\right)}=\frac{(x-1)(x-3)}{(2-1)(2-3)}=-x^{2}+4 x-3 \\
\ell_{2}(x) & =\frac{\left(x-c_{0}\right)\left(x-c_{1}\right)}{\left(c_{2}-c_{0}\right)\left(c_{2}-c_{1}\right)}=\frac{(x-1)(x-2)}{(3-1)(3-2)}=\frac{1}{2}\left(x^{2}-3 x+2\right)
\end{aligned}
$$

so that by the previous example,

$$
\begin{aligned}
g(x) & =b_{0} \ell_{0}(x)+b_{1} \ell_{1}(x)+b_{2} \ell_{2}(x) \\
& =8\left[\frac{1}{2}\left(x^{2}-5 x+6\right)\right]+5\left[-x^{2}+4 x-3\right]-4\left[\frac{1}{2}\left(x^{2}-3 x+2\right)\right] \\
& =(4-5-2) x^{2}+(-20+20+6) x+24-15-4 \\
& =-3 x^{2}+6 x+5
\end{aligned}
$$

which is the desired polynomial.

Example 0.7 Verify directly that $\mathbb{R}_{3}[x] \cong \mathbb{R}^{2 \times 2}$.
Solution: We give here a rather novel way of doing it. Define $T \in \mathcal{L}\left(\mathbb{R}[x], M_{2}(\mathbb{R})\right)$ by

$$
T(f(x))=\left(\begin{array}{ll}
f(1) & f(2) \\
f(3) & f(4)
\end{array}\right)
$$

Then, T is indeed linear:

$$
\begin{aligned}
T(a f(x)+b g(x)) & =\left(\begin{array}{ll}
(a f+b g)(1) & (a f+b g)(2) \\
(a f+b g)(3) & (a f+b g)(4)
\end{array}\right) \\
& =\left(\begin{array}{ll}
a f(1)+b g(1) & a f(2)+b g(2) \\
a f(3)+b g(3) & a f(4)+b g(4)
\end{array}\right) \\
& =a\left(\begin{array}{ll}
f(1) & f(2) \\
f(3) & f(4)
\end{array}\right)+b\left(\begin{array}{cc}
g(1) & g(2) \\
g(3) & g(4)
\end{array}\right) \\
& =a T(f(x))+b T(g(x))
\end{aligned}
$$

Moreover, T is 1-1: if $T(f(x))=T(g(x))$, then

$$
\left(\begin{array}{ll}
f(1) & f(2) \\
f(3) & f(4)
\end{array}\right)=\left(\begin{array}{ll}
g(1) & g(2) \\
g(3) & g(4)
\end{array}\right)
$$

whence $f(1)=g(1), f(2)=g(2), f(3)=g(3)$ and $f(4)=g(4)$, whence by Example 0.5 (Lagrange interpolation),

$$
\begin{aligned}
f(x) & =f(1) p_{1}(x)+f(2) p_{2}(x)+f(3) p_{3}(x)+f(4) p_{4}(x) \\
& =g(1) p_{1}(x)+g(2) p_{2}(x)+g(3) p_{3}(x)+g(4) p_{4}(x) \\
& =g(x)
\end{aligned}
$$

where $p_{1}(x), \ldots, p_{4}(x)$ are Lagrange polynomials in $\mathbb{R}_{3}[x]$ associated with $1,2,3$ and 4 . Alternatively,

$$
T(f(x))=O \quad \Longleftrightarrow \quad f(1)=f(2)=f(3)=f(4)=0
$$

in which case $f(x)=f_{0}(x)$, the zero polynomial, which also follows from the Lagrange polynomial method of Example 0.5, so that $\operatorname{ker}(T)=\left\{f_{0}(x)\right\}$. Hence, T is 1-1. But T is also onto: note that $\operatorname{dim}(\mathbb{R}[x])=4=\operatorname{dim}\left(\mathbb{R}^{2 \times 2}\right)$, so we can deduce that T is onto, whence it is bijective and invertible, and so an isomorphism. Therefore $\mathbb{R}_{3}[x] \cong \mathbb{R}^{2 \times 2}$.

Example 0.8 Show that equation $2 x^{2}-4 x y+5 y^{2}=1$ is the equation of an ellipse rotated through an angle of $\pi / 6$ radians.

Figure 0.1: $2 x^{2}-4 x y+5 y^{2}=1$, the ellipse $x^{2}+6 y^{2}=1$ rotated through $\pi / 6$.
Suppose we want to rotate the ellipse $x^{2}+6 y^{2}=1$ by $\pi / 6$. We regard this equation as the pre-image or level set of 0

$$
F^{-1}(0)
$$

under the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
F(\mathbf{x})=F(x, y)=x^{2}+6 y^{2}-1
$$

What we want to do is change coordinates in \mathbb{R}^{2}, that is change bases in \mathbb{R}^{2}, in such a way that the old basis is orthonormal but rotated through an angle of $\pi / 6$, and the function $F\left(\mathbf{x}^{\prime}\right)=F\left(x^{\prime}, y^{\prime}\right)=0$ is the same expression but in the old coordinates x^{\prime}, y^{\prime}. When we translate this expression from x^{\prime}, y^{\prime} coordinates into x, y, the standard Castesian coordinates, we'll get a new expression in the regular Cartesian coordinates, representing the rotated ellipse. Thus the problem reduces to finding $\mathbf{x}^{\prime}=\left[\mathbf{x}^{\prime}\right]_{\beta}$ in terms of $\mathbf{x}=[\mathbf{x}]_{\gamma}$, where γ is the old basis and $\beta=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is the new standard basis. This reduces to finding the change of basis matrix, $M_{\gamma, \beta}$,

$$
\mathbf{x}^{\prime}=\left[\mathbf{x}^{\prime}\right]_{\beta}=M_{\gamma, \beta}[\mathbf{x}]_{\gamma}
$$

and inserting the result into $F\left(\mathbf{x}^{\prime}\right)=0$. Towards this end, we first choose orthogonal vectors \mathbf{x}_{1}^{\prime} and \mathbf{x}_{2}^{\prime} such that \mathbf{x}_{1}^{\prime} is rotated $\pi / 6$ from the x-axis and \mathbf{x}_{2}^{\prime} is rotated $\pi / 6$ from the y-axis. An obvious choice is $\mathbf{x}_{1}^{\prime}=(2,1)$ and $\mathbf{x}_{2}^{\prime}=(-1,2)$, $\operatorname{since} \sin (\pi / 6)=1 / 2$. If we multiply each by $1 /\left|\mathbf{x}_{1}^{\prime}\right|=1 /\left|\mathbf{x}_{2}^{\prime}\right|=1 / \sqrt{5}$, then we have orthonormal vectors \mathbf{v}_{1}^{\prime} and \mathbf{v}_{2}^{\prime} which give the old basis

$$
\gamma=\left\{\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}\right\}=\{(2 / \sqrt{5}, 1 / \sqrt{5}),(-1 / \sqrt{5}, 2 / \sqrt{5})\}
$$

We now calculate the change of coordinates matrix $M_{\gamma, \beta}$:

$$
\phi_{\beta}\left(\mathbf{v}_{1}\right)=\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}}
\end{array}\right]_{\beta}=\binom{\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}} \quad \text { and } \quad \phi_{\beta}\left(\mathbf{v}_{2}\right)=\left[\begin{array}{l}
\frac{-1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right]_{\beta}=\binom{\frac{-1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}
$$

so that

$$
M_{\beta, \gamma}^{-1}=M_{\gamma, \beta}=\left[\phi_{\beta}\left(\mathbf{v}_{1}\right) \quad \phi_{\beta}\left(\mathbf{v}_{2}\right)\right]=\left(\begin{array}{cc}
\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right)
$$

Therefore,

$$
\mathbf{x}^{\prime}=\binom{x^{\prime}}{y^{\prime}}=\left[\mathbf{x}^{\prime}\right]_{\beta}=M_{\gamma, \beta}[\mathbf{x}]_{\gamma}=\left(\begin{array}{cc}
\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right)\binom{x}{y}=\binom{\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}} y}{\frac{1}{\sqrt{5}} x+\frac{2}{\sqrt{5}} y}
$$

or

$$
x^{\prime}=\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}} y \quad y^{\prime}=\frac{1}{\sqrt{5}} x+\frac{2}{\sqrt{5}} y
$$

Consequently,

$$
\begin{aligned}
\left(F \circ \phi_{\beta}\right)\left(\mathbf{x}^{\prime}\right) & =\left(\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}} y\right)^{2}+6\left(\frac{1}{\sqrt{5}} x+\frac{2}{\sqrt{5}} y\right)^{2}-1 \\
& =\left(\frac{4}{5}+\frac{6}{5}\right) x^{2}+\left(-\frac{4}{5}+\frac{24}{5}\right) x y+\left(\frac{1}{5}+\frac{24}{5}\right) y^{2}-1 \\
& =2 x^{2}+4 x y+5 y^{2}-1 \\
& =0
\end{aligned}
$$

and we have our equation, $2 x^{2}-4 x y+5 y^{2}=1$, in standard coordinates. I graphed the ellipse with Matlab. First, I started with the simple equation $x^{2}+6 y^{2}=1$ in the old basis, then I parametrized x and y by introducing the function $f:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ given by

$$
f(t)=\mathbf{x}(t)=\binom{x(t)}{y(t)}=\binom{\cos (t)}{\frac{1}{\sqrt{6}} \sin (t)}
$$

since from the equation $x^{2}+6 y^{2}=1$ we are given that $\frac{1}{a^{2}}=1$ and $\frac{1}{b^{2}}=6$, or $a=1$ and $b=\frac{1}{\sqrt{6}}$. Then I used $M_{\gamma, \beta}$ to get the new coordinates, which I labeled z and w, and which are given by

$$
z=\frac{2}{\sqrt{5}} x-\frac{1}{\sqrt{5}} y \quad \text { and } \quad w=\frac{1}{\sqrt{5}} x+\frac{2}{\sqrt{5}} y
$$

That is, I composed g with f, where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $g(\mathbf{x})=M_{\gamma, \beta} \mathbf{x}$, so that what we end up having is $g \circ f:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ given by

$$
(g \circ f)(t)=M_{\gamma, \beta} \mathbf{x}(t)=\left(\begin{array}{cc}
\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right)\binom{\cos (t)}{\frac{1}{\sqrt{6}} \sin (t)}=\binom{\frac{2}{\sqrt{5}} \cos (t)-\frac{1}{\sqrt{30}} \sin (t)}{\frac{1}{\sqrt{5}} \cos (t)+\frac{2}{\sqrt{30}} \sin (t)}
$$

The figure can then be generated with either of the following Matlab codes:

```
```

t=[0:0.01:2*pi];

```
```

t=[0:0.01:2*pi];
x=cos(t);
x=cos(t);
y=sin(t)./sqrt(6);
y=sin(t)./sqrt(6);
z=2.*x./sqrt(5)-y./sqrt(5);
z=2.*x./sqrt(5)-y./sqrt(5);
w=x./sqrt(5)+2.*y./sqrt(5);
w=x./sqrt(5)+2.*y./sqrt(5);
a=[-1.5:0.01:1.5]; b=[-1:0.01:1];
a=[-1.5:0.01:1.5]; b=[-1:0.01:1];
c=0; d=0; e=a./2; f=-2*a;
c=0; d=0; e=a./2; f=-2*a;
plot(z,w,a,e,a,f,a,c,d,b)
plot(z,w,a,e,a,f,a,c,d,b)
axis equal
axis equal
grid on

```
```

grid on

```
```

$\mathrm{t}=[0: 0.01: 2 * \mathrm{pi}]$;
$\mathrm{x}=2 . * \cos (\mathrm{t}) . / \mathrm{sqr} \mathrm{t}(5)-\sin (\mathrm{t}) . / \mathrm{sqrt}(30)$;
$\mathrm{y}=\cos (\mathrm{t}) . / \mathrm{sqrt}(5)+2 . * \sin (\mathrm{t}) . /$ sqrt (30) ;
$a=[-1.5: 0.01: 1.5] ; b=[-1: 0.01: 1]$;
or $\quad c=0 ; d=0 ; e=a . / 2 ; f=-2 * a ;$
plot($x, y, a, e, a, f, a, c, d, b)$
axis equal
grid on

Example $0.94 x^{2}+4 x y+y^{2}+\sqrt{5} x-2 \sqrt{5} y=0$ is the parabola $y=x^{2}$ rotated through an angle of $\pi / 6$ radians.

Figure 0.2: $4 x^{2}+4 x y+y^{2}+\sqrt{5} x-2 \sqrt{5} y=0$, the parabola $y=x^{2}$ rotated through $\pi / 6$.
By the same procedure as in the previous example, starting with $y^{\prime}=x^{\prime 2}$ in the old coordinates, we get

$$
x^{\prime}=\frac{2}{\sqrt{5}} x+\frac{1}{\sqrt{5}} y \quad \text { and } \quad y^{\prime}=\frac{-1}{\sqrt{5}} x+\frac{2}{\sqrt{5}} y
$$

Plugging these into the original equation gives

$$
\begin{aligned}
y^{\prime}=x^{\prime 2} & \Longrightarrow \frac{-1}{\sqrt{5}} x+\frac{2}{\sqrt{5}} y=\left(\frac{2}{\sqrt{5}} x+\frac{1}{\sqrt{5}} y\right)^{2} \\
& \Longrightarrow \frac{-1}{\sqrt{5}} x+\frac{2}{\sqrt{5}} y=\frac{4}{5} x^{2}+\frac{4}{5} x y+\frac{1}{5} y^{2} \\
& \Longrightarrow 4 x^{2}+4 x y+y^{2}+\sqrt{5} x-2 \sqrt{5} y=0
\end{aligned}
$$

To generate this figure I used the same matrix $M_{\gamma, \beta}$ as in the previous example, and the following Matlab code:

```
x=[-3:0.01:3];
y=x.^ 2;
z=2.*x./sqrt(5)-y./sqrt(5);
w=x./sqrt (5)+2.*y./sqrt (5);
a=[-5:0.01:5]; b=[-5:0.01:5];
c=0; d=0; e=a./2; f=-2*a;
plot(z,w,a,e,a,f,a,c,d,b)
axis equal
grid on
```

Example 0.10 Determine whether the linear transformation $T \in \mathcal{L}\left(\mathbb{R}_{2}[x]\right)$ given by

$$
T(f(x))=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)
$$

is an isomorphism, and if so, what the inverse is.
Solution: First, we need to compute $[T]_{\beta}$, where β is the standard ordered basis of $\mathbb{R}_{2}[x]$.

$$
\begin{aligned}
& T(1)=1+1^{\prime}+1^{\prime \prime}=1+0+0=1 \\
& T(x)=x+x^{\prime}+x^{\prime \prime}=x+1+0=1+x \quad \Longrightarrow \quad[T]_{\beta}=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right), ~ \\
& T\left(x^{2}\right)=x^{2}+\left(x^{2}\right)^{\prime}+\left(x^{2}\right)^{\prime \prime}=x^{2}+2 x+2
\end{aligned}
$$

Now, $[T]_{\beta}$ is invertible since it's columns are linearly independent, so T is an isomorphism. We'll find $\left([T]_{\beta}\right)^{-1}$ by multiplication by elementary matrices, just to show how it's done (the full justification for this method is given below):

$$
\begin{aligned}
& \left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll|lll}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll|llr}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr|rrr}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll|lll}
1 & 1 & 0 & 1 & 0 & -2 \\
0 & 1 & 0 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr|rrr}
1 & 1 & 0 & 1 & 0 & -2 \\
0 & 1 & 0 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll|lrr}
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Now,

$$
\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

so that the above procedure can be condensed into the following statement

$$
\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll|lll}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll|lrr}
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

which means

$$
\left[T^{-1}\right]_{\beta}=\left([T]_{\beta}\right)^{-1}=\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)
$$

so that

$$
\left[T^{-1}\left(a+b x+c x^{2}\right)\right]_{\beta}=\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
a-b \\
b-2 c \\
c
\end{array}\right)
$$

Hence

$$
T^{-1}\left(a+b x+c x^{2}\right)=(a-b)+(b-2 c) x+c x^{2}
$$

0.2 Exercises

1. Using the same T as in Example 0.1, but different β and γ, namely,

$$
\beta=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=((1,2),(3,-5)), \quad \gamma=\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right)=((1,-1,1),(2,3,1),(0,-2,1))
$$

compute $[T]_{\beta}^{\gamma}$. Do this in two different ways,

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{ll}
C^{-1} T\left(\mathbf{v}_{1}\right) & C^{-1} T\left(\mathbf{v}_{2}\right)
\end{array}\right]
$$

and

$$
[T]_{\beta}^{\gamma}=C^{-1}[T]_{\rho_{2}}^{\rho_{3}} B
$$

2. Let β and γ be as in Example 0.1 and let β^{\prime} and γ^{\prime} be as in Exercise 1 above. Compute $M_{\beta^{\prime}, \beta}$ and $M_{\gamma, \gamma^{\prime}}$, and find $[T]_{\beta^{\prime}}^{\gamma^{\prime}}$ from $[T]_{\beta}^{\gamma}$, which we computed in Example 0.1, by using Theorem 0.30 in Matrix Representations, namely

$$
[T]_{\beta^{\prime}}^{\gamma^{\prime}}=M_{\gamma, \gamma^{\prime}}[T]_{\beta}^{\gamma} M_{\beta^{\prime}, \beta}
$$

3. Let $\beta=\left(1, x, x^{2}\right)$ and $\beta^{\prime}=\left(a_{0}+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+b_{2} x^{2}, c_{0}+c_{1} x+c_{2} x^{2}\right)$ be two ordered bases for $\mathbb{R}_{2}[x]$. Find $M_{\beta^{\prime}, \beta}$, the matrix changing β^{\prime} coordinates into standard β coordinates, and find its inverse $M_{\beta^{\prime}, \beta}^{-1}=M_{\beta, \beta^{\prime}}$. Then use the result to express the polynomial $2 x-5 x^{2}$ in β^{\prime} coordinates.
4. Show that $\mathbb{R}_{3}[x] \cong \mathbb{R}^{2 \times 2}$ by using the function $T: \mathbb{R}_{3}[x] \rightarrow \mathbb{R}^{2 \times 2}$ defined by

$$
T(f(x))=T\left(a+b x+c x^{2}+d x^{3}\right):=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Show that T is linear, injective, and surjective, so that $T \in \operatorname{GL}\left(\mathbb{R}_{3}[x], \mathbb{R}^{2 \times 2}\right)$, i.e. T is an isomorphism.
5. Let $T: \mathbb{R}_{1}[x] \rightarrow \mathbb{R}_{1}[x]$ be defined by $T(a+b x):=(2 a+b)+(a-3 b) x$. If we use the basis $\beta=(1+x, 1+2 x)$ for $\mathbb{R}_{1}[x]$, find T^{-1} by finding $\left([T]_{\beta}\right)^{-1}$.

