
Examples and Exercises

0.1 Worked Examples

Example 0.1 In Example 0.20, Matrix Representations, we showed that the linear transformation
T ∈ L(R2,R3) given by T (x, y) = (x + y, 2x − y, 3x + 5y), which has a matrix representation with
respect to standard bases ρ2 = (e1, e2) and ρ3 = (e1, e2, e3)

[T ]ρ3ρ2 =

1 1
2 −1
3 5


has a different matrix representation with respect to the bases β = (v1,v2) =

(
(1, 1), (0,−1)

)
and

γ = (w1,w2,w3) =
(
(1, 1, 1), (1, 0, 1), (0, 0, 1)

)
, namely

[T ]γβ =

1 1
1 −2
6 −4


We achieved this second representation by computing [T (vi)]γ , namely, [T (vi)]γ = C−1T (vi), where

C =
[
w1 w2 w3

]
=

1 1 0
1 0 0
1 1 1

 so that C−1 =

 0 1 0
1 −1 0
−1 0 1


Let

B =
[
v1 v2

]
=

[
1 0
1 −1

]
so that B−1 = B =

[
1 0
1 −1

]
Show that this representation may also be derived by using Theorem 0.23 of Matrix Representations,
namely, by using the relation:

C−1[T ]ρ3ρ2 = [T ]γβB
−1

Solution: This is easy enough, since C−1[T ]ρ3ρ2 = [T ]γβB
−1 holds iff C−1[T ]ρ3ρ2B = [T ]γβ , just right-

multiply by B! Well, let’s do this:

[T ]γβ = C−1[T ]ρ3ρ2B

=

 0 1 0
1 −1 0
−1 0 1

1 1
2 −1
3 5

[1 0
1 −1

]

=

 0 1 0
1 −1 0
−1 0 1

2 −1
1 1
8 −5


=

1 1
1 −2
6 −4


This verifies the claim of that theorem for this example, and it exemplifies the second method of
attack for such a problem. �
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Example 0.2 If T ∈ L(R3[x],R2[x]) is given by T (f(x)) = f ′(x), and β = (1, x, x2, x3) and γ =
(1, x, x2) are the standard ordered bases for R3[x] and R2[x], respectively, the matrix representation
of T is found as follows:

T (1) = 1′ = 0 = 0 · 1 + 0x+ 0x2

T (x) = x′ = 1 = 1 · 1 + 0x+ 0x2

T (x2) = (x2)′ = 2x = 0 · 1 + 2x+ 0x2

T (x3) = (x3)′ = 3x2 = 0 · 1 + 0x+ 3x2

 =⇒ [T ]γβ =

0 1 0 0
0 0 2 0
0 0 0 3

 �

Example 0.3 Let T ∈ L
(
R3[x],R2[x]

)
be given by T (f(x)) = f ′(x) and let β and γ be the standard

ordered bases for R3[x] and R2[x], respectively. Verify that

[T (p(x))]γ = [T ]γβ [p(x)]β

for the polynomial p(x) = 2− 4x+ x2 + 3x3 ∈ R3[x].

Solution: First, for p(x) = 2− 4x+ x2 + 3x3 we have T (p(x)) = p′(x) = −4 + 2x+ 9x2. Moreover,
by Example 0.2 we have

[T ]γβ =

0 1 0 0
0 0 2 0
0 0 0 3


and clearly we have

[p(x)]β =


2
−4

1
3

 [T (p(x))]γ = [p′(x)]γ =

−4
2
9


Consequently,

[T ]γβ [p(x)]β =

0 1 0 0
0 0 2 0
0 0 0 3




2
−4

1
3

 =

−4
2
9

 = [T (p(x))]γ �

Example 0.4 Let T ∈ L
(
R2×2,R2×2) be given by T (A) = AT , and let

B = {e1, e2, e3, e4} =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
be a basis for R2×2. Verify that [T (A)]B = [T ]B [A]B, for

A =

(
1 4
−1 6

)

Solution: First,

[T (A)]B = [AT ]B =

[(
1 −1
4 6

)]
B

= [1e1 − 1e2 + 4e3 + 6e4]B =


1
−1

4
6
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Obviously T is linear, because it is componentwise linear in R. We next need to determine [T ]B and
[A]B :

T (e1) = e1 = 1e1 + 0e2 + 0e3 + 0e4

T (e2) = e3 = 0e1 + 0e2 + 1e3 + 0e4

T (e3) = e2 = 0e1 + 1e2 + 0e3 + 0e4

T (e4) = e4 = 0e1 + 0e2 + 0e3 + 1e4

 =⇒


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Consequently

[T ]B [A]B =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1
4
−1

6

 =


1
−1

4
6

 = [T (A)]B �

Example 0.5 Given distinct constants c0, c1, . . . , cn ∈ R, we can define n+ 1 distinct polynomials
that each have all except one of the c0, . . . , cn as roots, and such that they are linearly independent
as vectors in Rn+1[x]. This gives us a special basis for Rn+1[x], one which allows the construction
of an n+ 1-degree polynomial passing through the points (c0, b0), . . . , (cn, bn) ∈ R2. The Lagrange
polynomials, `0(x), . . . , `n(x) ∈ Rn+1[x] associated with the c0, . . . , cn are given by

`i(x) =
(x− c0) · · · (x− ci−1)(x− ci+1) · · · (x− cn)

(ci − c0) · · · (ci − ci−1)(ci − ci+1) · · · (ci − cn)
=

n∏
k=0
k 6=i

x− ck
ci − ck

As a consequence of this definition we have that

`i(cj) =

{
0, if i 6= j

1, if i = j
(0.1)

This property of Lagrange polynomials means that β = {`0, `1, . . . , `n} is a basis for Rn+1[x]. As a
result, if we specify a set of n+ 1 constants in b0, b1, . . . , bn ∈ R, the polynomial

g(x) =

n∑
i=0

bi`i(x)

is the unique polynomial in R[x] such that g(cj) = bj for all j = 0, 1, . . . , n. The process of finding
the polynomial g(x) such that g(cj) = bj for all j = 0, 1, . . . , n is called Lagrange interpolation.

This is shown as follows: First, note that β = {`0, `1, . . . , `n} is a linearly independent subset of
Rn[x], since if we choose scalars a0, . . . , an ∈ R, and we let p0(x) ≡ 0 (the zero polynomial), and if
we suppose

a0`0(x) + a1`1(x) + · · ·+ an`n(x) = p0(x)

= 0
for all x ∈ R

we have by (0.1)

a0`(cj) + a1`1(cj) + · · ·+ an`n(cj) = aj`j(cj)

= aj

= 0

for j = 0, 1, . . . , n

so a0 = · · · = an = 0 and β is linearly independent. Since dim
(
Rn[x]

)
= n + 1, it follows that β

is a basis for Rn[x]. Consequently, every n-th degree polynomial in Rn[x] is a linear combination of
polynomials in β, so that if g ∈ Rn[x], then ∃b1, . . . , bn ∈ R such that

g = b1`1 + · · ·+ bn`n
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By (0.1) this means that for j = 1, . . . , n

g(cj) = b1`1(cj) + · · ·+ bn`n(cj) = bj`(cj) = bj

so that
g(x) = g(c0)`0(x) + g(c1)`1(x) + · · ·+ g(cn)`n(x) (0.2)

is the unique representation of g as a linear combination of elements of β. (0.2) is called the
Lagrange interpolation formula. �

Example 0.6 Find the real polynomial g(x) ∈ R[x] of degree at most 2 whose graph contains the
points (1, 8), (2, 5), and (3,−4).

Solution: (1, 8), (2, 5), (3,−4) ∈ G(g) =⇒ g(1) = 8, g(2) = 5 and g(3) = −4, so that c0 = 1, c1 = 2,
c2 = 3, b0 = 8, b1 = 5 and b2 = −4. Hence

`0(x) =
(x− c1)(x− c2)

(c0 − c1)(c0 − c2)
=

(x− 2)(x− 3)

(1− 2)(1− 3)
=

1

2
(x2 − 5x+ 6)

`1(x) =
(x− c0)(x− c2)

(c1 − c0)(c1 − c2)
=

(x− 1)(x− 3)

(2− 1)(2− 3)
= −x2 + 4x− 3

`2(x) =
(x− c0)(x− c1)

(c2 − c0)(c2 − c1)
=

(x− 1)(x− 2)

(3− 1)(3− 2)
=

1

2
(x2 − 3x+ 2)

so that by the previous example,

g(x) = b0`0(x) + b1`1(x) + b2`2(x)

= 8
[1

2
(x2 − 5x+ 6)

]
+ 5
[
−x2 + 4x− 3

]
− 4
[1

2
(x2 − 3x+ 2)

]
= (4− 5− 2)x2 + (−20 + 20 + 6)x+ 24− 15− 4

= −3x2 + 6x+ 5

which is the desired polynomial. �

Example 0.7 Verify directly that R3[x] ∼= R2×2.

Solution: We give here a rather novel way of doing it. Define T ∈ L
(
R[x],M2(R)

)
by

T (f(x)) =

(
f(1) f(2)
f(3) f(4)

)
Then, T is indeed linear:

T (af(x) + bg(x)) =

(
(af + bg)(1) (af + bg)(2)
(af + bg)(3) (af + bg)(4)

)
=

(
af(1) + bg(1) af(2) + bg(2)
af(3) + bg(3) af(4) + bg(4)

)
= a

(
f(1) f(2)
f(3) f(4)

)
+ b

(
g(1) g(2)
g(3) g(4)

)
= aT (f(x)) + bT (g(x))

Moreover, T is 1-1: if T (f(x)) = T (g(x)), then(
f(1) f(2)
f(3) f(4)

)
=

(
g(1) g(2)
g(3) g(4)

)
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whence f(1) = g(1), f(2) = g(2), f(3) = g(3) and f(4) = g(4), whence by Example 0.5 (Lagrange
interpolation),

f(x) = f(1)p1(x) + f(2)p2(x) + f(3)p3(x) + f(4)p4(x)

= g(1)p1(x) + g(2)p2(x) + g(3)p3(x) + g(4)p4(x)

= g(x)

where p1(x), . . . , p4(x) are Lagrange polynomials in R3[x] associated with 1, 2, 3 and 4. Alternatively,

T (f(x)) = O ⇐⇒ f(1) = f(2) = f(3) = f(4) = 0

in which case f(x) = f0(x), the zero polynomial, which also follows from the Lagrange polynomial
method of Example 0.5, so that ker(T ) = {f0(x)}. Hence, T is 1-1. But T is also onto: note that
dim(R[x]) = 4 = dim(R2×2), so we can deduce that T is onto, whence it is bijective and invertible,
and so an isomorphism. Therefore R3[x] ∼= R2×2. �

Example 0.8 Show that equation 2x2− 4xy+ 5y2 = 1 is the equation of an ellipse rotated through
an angle of π/6 radians.

Figure 0.1: 2x2 − 4xy + 5y2 = 1, the ellipse x2 + 6y2 = 1 rotated through π/6.

Suppose we want to rotate the ellipse x2 +6y2 = 1 by π/6. We regard this equation as the pre-image
or level set of 0

F−1(0)

under the function F : R2 → R given by

F (x) = F (x, y) = x2 + 6y2 − 1

What we want to do is change coordinates in R2, that is change bases in R2, in such a way that the
old basis is orthonormal but rotated through an angle of π/6, and the function F (x′) = F (x′, y′) = 0
is the same expression but in the old coordinates x′, y′. When we translate this expression from
x′, y′ coordinates into x, y, the standard Castesian coordinates, we’ll get a new expression in the
regular Cartesian coordinates, representing the rotated ellipse. Thus the problem reduces to finding
x′ = [x′]β in terms of x = [x]γ , where γ is the old basis and β = {e1, e2} is the new standard basis.
This reduces to finding the change of basis matrix, Mγ,β ,

x′ = [x′]β = Mγ,β [x]γ
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and inserting the result into F (x′) = 0. Towards this end, we first choose orthogonal vectors x′1
and x′2 such that x′1 is rotated π/6 from the x-axis and x′2 is rotated π/6 from the y-axis. An
obvious choice is x′1 = (2, 1) and x′2 = (−1, 2), since sin(π/6) = 1/2. If we multiply each by
1/|x′1| = 1/|x′2| = 1/

√
5, then we have orthonormal vectors v′1 and v′2 which give the old basis

γ = {v′1,v′2} =
{

(2/
√

5, 1/
√

5), (−1/
√

5, 2/
√

5)
}

We now calculate the change of coordinates matrix Mγ,β :

φβ(v1) =


2√
5

1√
5


β

=


2√
5

1√
5

 and φβ(v2) =


−1√

5

2√
5


β

=


−1√

5

2√
5


so that

M−1β,γ = Mγ,β =
[
φβ(v1) φβ(v2)

]
=


2√
5

−1√
5

1√
5

2√
5


Therefore,

x′ =

(
x′

y′

)
= [x′]β = Mγ,β [x]γ =


2√
5

−1√
5

1√
5

2√
5


(
x

y

)
=


2√
5
x− 1√

5
y

1√
5
x+

2√
5
y


or

x′ =
2√
5
x− 1√

5
y y′ =

1√
5
x+

2√
5
y

Consequently,

(F ◦ φβ)(x′) =

(
2√
5
x− 1√

5
y

)2

+ 6

(
1√
5
x+

2√
5
y

)2

− 1

=

(
4

5
+

6

5

)
x2 +

(
−4

5
+

24

5

)
xy +

(
1

5
+

24

5

)
y2 − 1

= 2x2 + 4xy + 5y2 − 1

= 0

and we have our equation, 2x2 − 4xy + 5y2 = 1, in standard coordinates. I graphed the ellipse with
Matlab. First, I started with the simple equation x2 + 6y2 = 1 in the old basis, then I parametrized
x and y by introducing the function f : [0, 2π]→ R2 given by

f(t) = x(t) =

(
x(t)
y(t)

)
=

 cos(t)
1√
6

sin(t)


since from the equation x2 + 6y2 = 1 we are given that 1

a2 = 1 and 1
b2 = 6, or a = 1 and b = 1√

6
.

Then I used Mγ,β to get the new coordinates, which I labeled z and w, and which are given by

z =
2√
5
x− 1√

5
y and w =

1√
5
x+

2√
5
y
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That is, I composed g with f , where g : R2 → R2 is given by g(x) = Mγ,βx, so that what we end
up having is g ◦ f : [0, 2π]→ R2 given by

(g ◦ f)(t) = Mγ,βx(t) =


2√
5

−1√
5

1√
5

2√
5


 cos(t)

1√
6

sin(t)

 =


2√
5

cos(t)− 1√
30

sin(t)

1√
5

cos(t) +
2√
30

sin(t)


The figure can then be generated with either of the following Matlab codes:

t=[0:0.01:2*pi]; t=[0:0.01:2*pi];

x=cos(t); x=2.*cos(t)./sqrt(5)-sin(t)./sqrt(30);

y=sin(t)./sqrt(6); y=cos(t)./sqrt(5)+2.*sin(t)./sqrt(30);

z=2.*x./sqrt(5)-y./sqrt(5); a=[-1.5:0.01:1.5]; b=[-1:0.01:1];

w=x./sqrt(5)+2.*y./sqrt(5); or c=0; d=0; e=a./2; f=-2*a;

a=[-1.5:0.01:1.5]; b=[-1:0.01:1]; plot(x,y,a,e,a,f,a,c,d,b)

c=0; d=0; e=a./2; f=-2*a; axis equal

plot(z,w,a,e,a,f,a,c,d,b) grid on

axis equal

grid on �

Example 0.9 4x2 + 4xy + y2 +
√

5x − 2
√

5y = 0 is the parabola y = x2 rotated through an angle
of π/6 radians.

Figure 0.2: 4x2 + 4xy + y2 +
√

5x− 2
√

5y = 0, the parabola y = x2 rotated through π/6.

By the same procedure as in the previous example, starting with y′ = x′2 in the old coordinates, we
get

x′ =
2√
5
x+

1√
5
y and y′ =

−1√
5
x+

2√
5
y

Plugging these into the original equation gives

y′ = x′2 =⇒ −1√
5
x+

2√
5
y =

(
2√
5
x+

1√
5
y

)2

=⇒ −1√
5
x+

2√
5
y =

4

5
x2 +

4

5
xy +

1

5
y2

=⇒ 4x2 + 4xy + y2 +
√

5x− 2
√

5y = 0
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To generate this figure I used the same matrix Mγ,β as in the previous example, and the following
Matlab code:

x=[-3:0.01:3];

y=x.^ 2;

z=2.*x./sqrt(5)-y./sqrt(5);

w=x./sqrt(5)+2.*y./sqrt(5);

a=[-5:0.01:5]; b=[-5:0.01:5];

c=0; d=0; e=a./2; f=-2*a;

plot(z,w,a,e,a,f,a,c,d,b)

axis equal

grid on
�

Example 0.10 Determine whether the linear transformation T ∈ L
(
R2[x]

)
given by

T (f(x)) = f(x) + f ′(x) + f ′′(x)

is an isomorphism, and if so, what the inverse is.

Solution: First, we need to compute [T ]β , where β is the standard ordered basis of R2[x].

T (1) = 1 + 1′ + 1′′ = 1 + 0 + 0 = 1

T (x) = x+ x′ + x′′ = x+ 1 + 0 = 1 + x

T (x2) = x2 + (x2)′ + (x2)′′ = x2 + 2x+ 2

=⇒ [T ]β =

1 1 2
0 1 2
0 0 1


Now, [T ]β is invertible since it’s columns are linearly independent, so T is an isomorphism. We’ll find
([T ]β)−1 by multiplication by elementary matrices, just to show how it’s done (the full justification
for this method is given below):1 0 0

0 1 −2
0 0 1

1 1 2 1 0 0
0 1 2 0 1 0
0 0 1 0 0 1

 =

1 1 2 1 0 0
0 1 0 0 1 −2
0 0 1 0 0 1


=⇒

1 0 −2
0 1 0
0 0 1

1 1 2 1 0 0
0 1 0 0 1 −2
0 0 1 0 0 1

 =

1 1 0 1 0 −2
0 1 0 0 1 −2
0 0 1 0 0 1


=⇒

1 −1 0
0 1 0
0 0 1

1 1 0 1 0 −2
0 1 0 0 1 −2
0 0 1 0 0 1

 =

1 0 0 1 −1 0
0 1 0 0 1 −2
0 0 1 0 0 1


Now, 1 −1 0

0 1 −2
0 0 1

 =

1 0 0
0 1 −2
0 0 1

1 0 −2
0 1 0
0 0 1

1 −1 0
0 1 0
0 0 1


so that the above procedure can be condensed into the following statement1 −1 0

0 1 −2
0 0 1

1 1 2 1 0 0
0 1 2 0 1 0
0 0 1 0 0 1

 =

1 0 0 1 −1 0
0 1 0 0 1 −2
0 0 1 0 0 1


which means

[T−1]β = ([T ]β)−1 =

1 −1 0
0 1 −2
0 0 1
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so that

[T−1(a+ bx+ cx2)]β =

1 −1 0
0 1 −2
0 0 1

ab
c

 =

 a− b
b− 2c
c


Hence

T−1(a+ bx+ cx2) = (a− b) + (b− 2c)x+ cx2 �
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0.2 Exercises

1. Using the same T as in Example 0.1, but different β and γ, namely,

β = (v1,v2) =
(
(1, 2), (3,−5)

)
, γ = (w1,w2,w3) =

(
(1,−1, 1), (2, 3, 1), (0,−2, 1)

)
compute [T ]γβ . Do this in two different ways,

[T ]γβ =
[
C−1T (v1) C−1T (v2)

]
and

[T ]γβ = C−1[T ]ρ3ρ2B

2. Let β and γ be as in Example 0.1 and let β′ and γ′ be as in Exercise 1 above. Compute Mβ′,β

and Mγ,γ′ , and find [T ]γ
′

β′ from [T ]γβ , which we computed in Example 0.1, by using Theorem
0.30 in Matrix Representations, namely

[T ]γ
′

β′ = Mγ,γ′ [T ]γβMβ′,β

3. Let β = (1, x, x2) and β′ = (a0 + a1x+ a2x
2, b0 + b1x+ b2x

2, c0 + c1x+ c2x
2) be two ordered

bases for R2[x]. Find Mβ′,β , the matrix changing β′ coordinates into standard β coordinates,
and find its inverse M−1β′,β = Mβ,β′ . Then use the result to express the polynomial 2x− 5x2 in
β′ coordinates.

4. Show that R3[x] ∼= R2×2 by using the function T : R3[x]→ R2×2 defined by

T
(
f(x)

)
= T

(
a+ bx+ cx2 + dx3

)
:=

(
a b
c d

)
Show that T is linear, injective, and surjective, so that T ∈ GL(R3[x],R2×2), i.e. T is an
isomorphism.

5. Let T : R1[x] → R1[x] be defined by T (a + bx) := (2a + b) + (a − 3b)x. If we use the basis
β =

(
1 + x, 1 + 2x

)
for R1[x], find T−1 by finding ([T ]β)−1.
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