Quiz 8

Let

Т

$$A = \begin{pmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{pmatrix} \in M_{3,5}(\mathbb{R})$$

and suppose we plugged this into Wolfram and got

$$\operatorname{rref}(A) = \begin{pmatrix} 1 & -2 & 0 & -1 & 3\\ 0 & 0 & 1 & 2 & -2\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Let $B = \operatorname{rref}(A)$, so that we could call the columns and rows \mathbf{b}_j and \vec{B}_i , respectively.

1. The pivot columns of B are \mathbf{b}_1 and \mathbf{b}_3 . Write each of the other (nonpivot) columns of B as linear combinations of \mathbf{b}_1 and \mathbf{b}_3 :

(a) $\mathbf{b}_2 =$

(b) $\mathbf{b}_4 =$

(c) $b_5 =$

- 2. Show that in the original matrix A the columns \mathbf{a}_2 , \mathbf{a}_4 and \mathbf{a}_5 may be written in exactly the same linear combination of \mathbf{a}_1 and \mathbf{a}_3 :
 - (a) Demonstrate that the same $a, b \in \mathbb{R}$ as in #1(a) also satisfy $\mathbf{a}_2 = a\mathbf{a}_1 + b\mathbf{a}_3$
 - (b) Do the same for \mathbf{a}_4 .
 - (c) Repeat for \mathbf{a}_5 .