Quiz 6

1. An $m \times n$ matrix

Т

$$A = \begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \\ | & | & | & | \end{pmatrix}$$

can be viewed as a function from \mathbb{R}^n to \mathbb{R}^m , sending $\mathbf{x} = \langle x_1, \ldots, x_n \rangle \in \mathbb{R}^n$ to $A\mathbf{x} = \sum_{i=1}^n x_i \mathbf{a}_i = \mathbf{b} \in \mathbb{R}^m$.

(a) True or False: If m < n, then as a function A cannot be one-to-one.

(b) True or False: If m > n, then as a function A cannot be onto.

(c) True or False: A is one-to-one iff ('if and only if') the columns of A are linearly independent.

(d) True or False: A is onto iff the columns of A span \mathbb{R}^n .

(e) True or False: If m = n, then A, necessarily a square matrix, is invertible (both one-to-one and onto) iff $\mathbb{R}^n = \operatorname{span}(\mathbf{a}_1, \ldots, \mathbf{a}_n)$.