Quiz 13

Consider the standard and two non-standard bases for \mathbb{R}^2 ,

$$\sigma = (\mathbf{e}_1, \mathbf{e}_2) = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right), \quad \beta = (\mathbf{b}_1, \mathbf{b}_2) = \left(\begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right), \quad \gamma = (\mathbf{c}_1, \mathbf{c}_2) = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right)$$

and define the β -coordinate representation of a vector $\mathbf{x} \in \mathbb{R}^2$ to be

$$[\mathbf{x}]_{\beta} = \begin{pmatrix} a \\ b \end{pmatrix}, \text{ whenever } \mathbf{x} = a\mathbf{b}_1 + b\mathbf{b}_2$$

We similarly define $[\mathbf{x}]_{\gamma}$. The change-of-coordinates matrix changing β -coordinates to γ -coordinates is

$$M_{eta,\gamma} = \left([\mathbf{b}_1]_{\gamma} \ [\mathbf{b}_2]_{\gamma} \right)$$

You may use the following facts in your calculations:

- $[\mathbf{x}]_{\sigma} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^2$
- $[\mathbf{x}]_{\gamma} = M_{\beta,\gamma}[\mathbf{x}]_{\beta}$
- $M_{\beta,\sigma} = ([\mathbf{b}_1]_{\sigma} \ [\mathbf{b}_2]_{\sigma}) = (\mathbf{b}_1 \ \mathbf{b}_2)$
- $M_{\gamma,\beta} = M_{\beta,\gamma}^{-1}$
- $M_{\beta,\delta} = M_{\gamma,\delta} M_{\beta,\gamma}$ for any three bases β , γ , δ .
- 1. Find $M_{\beta,\sigma} = ([\mathbf{b}_1]_{\sigma} \ [\mathbf{b}_2]_{\sigma})$ and $M_{\sigma,\beta} = ([\mathbf{e}_1]_{\beta} \ [\mathbf{e}_2]_{\beta})$.

2. Find $M_{\gamma,\sigma}=\left([\mathbf{c}_1]_{\sigma}\ [\mathbf{c}_2]_{\sigma}\right)$ and $M_{\sigma,\gamma}=\left([\mathbf{e}_1]_{\gamma}\ [\mathbf{e}_2]_{\gamma}\right)=M_{\gamma,\sigma}^{-1}$.

3. Find $M_{\beta,\gamma} = ([\mathbf{b}_1]_{\gamma} \ [\mathbf{b}_2]_{\gamma})$ and $M_{\gamma,\beta} = ([\mathbf{c}_1]_{\beta} \ [\mathbf{c}_2]_{\beta}) = M_{\beta,\gamma}^{-1}$.

4. Let $\mathbf{x} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$. Use the above work to find $[\mathbf{x}]_{\beta}$ and $[\mathbf{x}]_{\gamma}$.

5. Verify that your representations for \mathbf{x} in # 4 are correct: for example, if $[\mathbf{x}]_{\beta} = \binom{a}{b}$, then verify that $\mathbf{x} = a\mathbf{b}_1 + b\mathbf{b}_2$, and similarly with γ .