Quiz 12

Consider the standard and two non-standard bases for \mathbb{R}^2 ,

$$\sigma = (\mathbf{e}_1, \mathbf{e}_2) = \left(\begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix} \right), \quad \beta = (\mathbf{b}_1, \mathbf{b}_2) = \left(\begin{pmatrix} 2\\ 1 \end{pmatrix}, \begin{pmatrix} -1\\ 1 \end{pmatrix} \right), \quad \gamma = (\mathbf{c}_1, \mathbf{c}_2) = \left(\begin{pmatrix} 0\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ 1 \end{pmatrix} \right)$$

and define the $\beta\text{-coordinate}$ representation of a vector $\mathbf{x}\in\mathbb{R}^2$ to be

$$[\mathbf{x}]_{\beta} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 means $\mathbf{x} = a\mathbf{b}_1 + b\mathbf{b}_2$

and similarly for $[\mathbf{x}]_{\gamma}$ (of course, $[\mathbf{x}]_{\sigma} = \mathbf{x}$).

1. Find $M_{\beta,\sigma} = ([\mathbf{b}_1]_{\sigma}, [\mathbf{b}_2]_{\sigma})$ and $M_{\sigma,\beta} = ([\mathbf{e}_1]_{\beta}, [\mathbf{e}_2]_{\beta}) = M_{\beta,\sigma}^{-1}$.

2. Find $M_{\gamma,\sigma} = \left([\mathbf{c}_1]_{\sigma}, [\mathbf{c}_2]_{\sigma} \right)$ and $M_{\sigma,\gamma} = \left([\mathbf{e}_1]_{\gamma}, [\mathbf{e}_2]_{\gamma} \right) = M_{\gamma,\sigma}^{-1}$.

3. Find $M_{\beta,\gamma} = ([\mathbf{b}_1]_{\gamma}, [\mathbf{b}_2]_{\gamma})$ and $M_{\gamma,\beta} = ([\mathbf{c}_1]_{\beta}, [\mathbf{c}_2]_{\beta}) = M_{\beta,\gamma}^{-1}$.

4. Verify that the components of the vector $[\mathbf{c}_1]_{\beta}$ are the coefficients c_i of $\mathbf{c}_1 = c_1\mathbf{b}_1 + c_2\mathbf{b}_2$ and the components of the vector $[\mathbf{c}_2]_{\beta}$ are the coefficients d_i of $\mathbf{c}_2 = d_1\mathbf{b}_1 + d_2\mathbf{b}_2$.