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PYTHAGOREAN GEOMETRY

ABout fifty years separated Thales and Pythagoras. With
Pythagoras geometry became for the first time a scientifie
subject pursued for its own sake. ‘Pythagoras’, says the
Proclus-summary, ‘transformed the study of geometryinto:
a liberal education, examining the principles of the science
from the beginning and probing the theorems through and
through in a purely intellectual manner’. Favorinus says
that he ‘used definitions on account of the mathematical
nature of the subject’. We conclude that Pythagoras first
laid down certain principles (including definitions), and then
built up an ordered sequence of propositions. ‘A figure
and a platform, not a figure and sixpence’; this was the
Pythagorean motto, meaning that each new theorem sets
up a platform from which to ascend to the next, and so on.

A comparatively early authority, Callimachus (about
250 B.C.), is quoted by Diodorus as having said that
Pythagoras discovered some geometrical theorems himself
and was the first to introduce others from Egypt into
Greece. Five lines quoted by Diodorus (minus a few words)
also form part of a longer fragment in the Oxyrhynchus
Papyri, though the text is still uncertain. The verses tell

us about the cup bequeathed by Bathycles, an Arcadian, -

to be given to the best of the Seven Wise Men, and how it
was first brought to Thales by Bathycles’ son, who ‘by
a happy chance found the old man scraping the ground
and drawing the figure discovered by the Phrygian
Euphorbus, who was the first to draw even scalene triangles

and a circle . . .’. Euphorbus is of course Pythagoras, who :

claimed to have been Euphorbus in one of his various
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scarnations. And, in spite of the anachronism, the figure
qiscovered by Euphorbus is presumably the theorem of
the square on the hypotenuse. The rest is uncertain. After
the word ‘circle’ (kvrdov) Diodorus has émrapirn, ‘seven-
Jengthed’, which, if correct, can hardly be taken to mean
anything else but the circle including seven orbits, i.e. the
sodiac circle, which embraces the independent circles of
the sun, moon, and planets. But this leaves the words
¢even scalene triangles’ high and dry, as it were. It would
be more natural if the reading were such as to enable us to
connect the circle with the scalene triangle, e.g. if the

circle were the circle circumscribing the scalene triangle.!
If Thales actually circumscribed a circle about a right-

angled triangle, as the citation from Pamphile suggests,

it would be most appropriate that the Pythagoreans should
‘generalize the problem and show how to circumscribe a
circle about any scalene triangle.

We proceed to set out the propositions in geometry

which are definitely attributed to the Pythagoreans, in-
- cluding those associated with the name of Pythagoras
~ himself.

~ () The sum of the angles of any triangle is equal to two right

angles.

As we have seen (p. 88), it is likely enough that this

- was first discovered with reference to the particular case

! Diodorus’ reading of the line in question is kal kdrdov éntaprrn didate
worevew, which does not scan. The Papyrus, in place of érrauirn, has

what looks like e’%, and the rest of the line apparently blank. Diels reads
kal kihov & Auca)y kndidafe vnoredew. I should like to suggest xal rkdrdov
éumhny instead of kal xkdrdov é(Awa), the word éumdny meaning ‘next to’
or ‘close by’, which seems a possible description (in a poem) of a circle
circumscribed about a triangle.
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of a right-angled triangle, after which the extension of |

the theorem to any triangle would be made by dividing the
triangle, by a perpendicular drawn from a vertex to the
opposite side, into two right-angled triangles. All that we

are told, however, is that Eudemus attributed the dis-
covery of the general theorem to the Pythagoreans and
gave their proof of it. This proof, as elegant as that of

Euclid, depends, equally with his, on the properties of
parallels, which must therefore have been known to the
authors of it. It is as follows:

D A e Let ABC be anytriangle,and through ‘

A draw DAE parallel to BC.

Then, since BC, DE are parallel, the

alternate angles DAB, ABC are equal.
Similarly, the alternate angles EAC,
B € ACB are equal.

Therefore the sum of the angles ABC, ACB is equal to

the sum of the angles DAB, EAC.

Add to each sum the angle BAC'; therefore the sum of

the three angles ABC, ACB, BAC, i.e. the three angles
of the triangle, is equal to the sum of the three angles
DAB, BAC, CAE,i.e. to two right angles.

We need not hesitate to credit the Pythagoreans with
the more general propositions about the angles of any
polygon, namely (1) that, if » be the number of the sides
or angles, the interior angles of the polygon are together
equal to 2n—4 right angles, and (2) that the exterior angles
of the polygon (being the supplements of the interior
angles respectively) are together equal to four right angles.
The propositions are interdependent, and Aristotle twice
quotes the latter. The Pythagoreans also discovered that
the only three regular polygons the angles of which, if
placed together round a common point as vertex, will just
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£l up the space (four right angles) round the point are the
: equilateral triangle, the square, and the regular hexagon.

(B) The ‘Theorem of Pythagoras’ (=Eucl. I. 47).
Tradition is unanimous in referring to Pythagoras the

i discovery of the theorem of the square on the hypotenuse ;
" put the documentary evidence is far from conclusive.
* (allimachus speaks of the ‘figure’ discovered by Pytha-

goras, and the distich of Apollodorus the ‘calculator’ or

" mathematician (date uncertain) says, ‘When Pythagoras
~ discovered that famous proposition on the strength of

which he offered a splendid sacrifice of oxen’. Unfor-

" tunately neither author says what the proposition he refers
" to actually was. But Plutarch, Athenaeus, Diogenes
. Laértius, and Porphyry all connect the story of the sacri-
~ fice with the theorem of the square on the hypotenuse,

though Plutarch, in giving Apollodorus’ verses, expresses

~ doubt whether the proposition referred to is that theorem
" or a certain problem of ‘applying an area’, while in another
~ passage he says that the occasion of the sacrifice was the
- solution of the problem ‘given two (rectilineal) figures, to

apply [he should rather have said ‘construct’] a third
which shall be equal to the one and similar to the other’.
Vitruvius, however, a century or so before Plutarch,

" definitely connected the sacrifice with the discovery that

the particular triangle 3, 4, 5 is right angled. Proclus will
not commit himself to a definite opinion ; he says, ‘If we
listen to those who wish to recount ancient history, we

- may find some of them referring this theorem (Eucl. I. 47)
- to Pythagoras and saying that he sacrificed an ox in
- celebration of his discovery. But, for my part, while I
~ admire those who first observed the truth of the theorem,
~ I marvel more at the writer of the Elements, not only
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because he confirmed it by a most lucid demonstration,
but because he compelled assent to the still more genera]
theorem in the sixth book by the irrefutable arguments of
science’. It is difficult for us to be more positive than
Proclus was; but for myself I like to believe that, so far :
as the general theorem and the proof of it are concerned,

the commonly accepted tradition is right.
Some knowledge, however, of the property of right-

angled triangles can be traced long before the date of :
Pythagoras. The Egyptians indeed do not seem to have
had it, for, although they knew that 32442 — 52, there iy

nothing in their mathematics, so far as known to us, to

suggest that they knew that the triangle (3, 4, 5) is right-

angled (T. Eric Peet, The Rhind Mathematical Papyrus,
p- 32). On the other hand, it would appear that practical
use was made of the theorem of the square on the hypo-
tenuse, as early as (say) 2000 B.c., by the Babylonians.
The evidence for this is the text of certain Babylonian
tablets containing mathematical problems which have
just recently (1928-9) been interpreted for the first time
by O. Neugebauer, W. Struve, and others. Two of the
problems are: to calculate the length (1) of a chord of a
circle from its sagitta and the diameter of the circle, and
(2) of the sagitta from the chord and the diameter. If
¢ be the chord, a its sagitta, and d the diameter of the
circle, the formulae intended to be used are evidently
¢ = V{d?—(d—2a)%} and a = H{d—+/(d2—c?}, and it is
not possible to account for these formulae except on the
assumption that they were based, in some form or
other, on the theorem of Pythagoras. In the particular
case ¢ = 2, ¢ = 12, d = 20, and the property used is
20% = 1624122, equivalent to 5% — 42432,

Again, there are those who credit the Indians with the

3
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i covery of the theorem. The claim is mainly based on
, Apastamba-gulba—Sdtm, which is thought to be at

1enst as early as the fourth or fifth century B.C. A feature

'. this work is the construction of right angles bY means
of stretched cords in the ratios of the sides of certam' right-
- oled triangles in rational numbers. Seven such triangles
- o used, which however reduce themselves to four, namely

3, 4, 5, (5,12, 13), (8, 15, 17), and (12, 35, 37).

2 ’One of these triangles (5, 12, 13) was known as early
' as the eighth century B.c., while yet a:notper (7, 24, 25)
Qappears in the Baudhayana S.-8., which is supposed to

be earlier than Apastamba. Hence the Indians knew that

" five distinct triangles in rational numbers a, b, ¢ such
| that a?--b*=c? are right angled. Yet, strangely enough,

Apastamba says, with reference to the seven triangles

~ which he mentions, ‘so many recognizable constructions
" are there’, as if he knew of no other rational right-angled

triangles. But Apastamba does also staj?e the equivalent
of Eucl. I. 47 in general terms, though without proof, and
bases on it constructions for finding the square equal to
(1) the sum, (2) the difference, of two given squares. He
also recognizes the truth of the theorem for an isosceles
triangle, and even gives a construction fo'r 4/2 or the length
of the diagonal of a unit-square; he in fact constructs
a line which is <1—{—%+3—%4 — m> times the side. This
approximation to 4/2 is no doubt derived from the con-
sideration that 2.12% =172—1, but the author doe.s not
betray any knowledge of the fact that this approximate
value is not exact.

The Indians, therefore, knew empirically of the property
of right-angled triangles and stated it generally. But they
gave no indication of any proof; their statement appears
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to have been the result of an imperfect induction from
a very small number of cases of right-angled triangles in

rational numbers known to them. This is in great contrast
to what is attributed to Pythagoras, which includes the
discovery of a general formula for finding an unlimited
number of rational right-angled triangles.

Assuming that,as Vitruvius says, Pythagoras began with
the triangle (3, 4, 5), the next step would be to seek for
other similar cases. An experiment may have been made
with an isosceles right-angled triangle,
and the mere drawing of a figure would
indicate the property in this case. If
the middle points of the sides of a square
be joined in order as in the annexed
diagram, we have a square inside the
original square and obviously half as
large. But the original square is equal
to the square on the diagonal of the inner square ; there-
fore the square on the diagonal is equal to twice the square
on the side.

In suggesting a possible method by which the general
theorem was first proved we have a choice between two
different lines of proof. One would be to represent the
three squares in a figure, and to show how the two are
equal to the one ; this would be after the manner of Euclid,
Book II. The other would be to use proportions after the
manner of Euclid, Book VI.

If the first method is preferred, no better suggestion
can be made than that of Bretschneider and Hankel.
The first of the subjoined figures, which is like that of
Euclid, II. 4, represents a larger square of side (a+b) and
two smaller squares of sides a, b respectively, with the
two complementary rectangles (a, b). Dividing each com-
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plementary rectangle into two equal right-angled triangles
by drawing the diagonal ¢, we then dispose the four tri-
angles within another square of side (2+-b) as shown in the
second figure. Deducting the four right-angled triangles

b

a
==
-
b -
- "c b c c
e a
. c
c
b a

(a, b, c) from the larger square in each figure, we have as
remainders, (1) in the first figure, the squares on @ and b,
and (2) in the second figure, the one square on c. Therefore
the sum of the squares on a, b is equal to the square on c.
The proof by proportion might
take different forms. Let ABC 2
be a triangle right angled at A4.
Draw AD perpendicular to BC.
Then the triangles DBA, DAC
are similar to the triangle ABC
and to one another.
Now (1) it follows from the theorems of Eucl. VI. 4 and

B D [

17 that BA*=BD . BC,
and AC?2=CD . BC.
ol BA*+ AC?=BC=.

Alternatively (2) it would be seen that, in the similar
triangles DBA, DAC, ABC, the corresponding sides oppo-
site to the right angle in each case are B4, AC, BC.
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The triangles are therefore in the duplicate ratio of thoge

sides, and so are the squares on the latter. Therefore the
squares are proportional to the corresponding triangles, |
But two of the triangles, DBA, DAC, together make

up the third triangle A BC.
Therefore the same is true of the corresponding squares;

or BA*++AC*=BC?.

It must not be overlooked that the Pythagorean theory

of proportion was only applicable to commensurable quan-

tities. This would be no obstacle to the use of proportions
in such a proof so long as the existence of the incom-

mensurable remained undiscovered. But, when once the

incommensurable was discovered, it would be necessary,
pending the appearance of a new theory of proportion

applicable to incommensurable as well as to commensurable
magnitudes, to invent new proofs independent of pro-
portions in place of those in which proportions were used.
Now it will be noticed that the first of the above proofs by
proportion shows that the square on BC is equal to the sum
of two rectangles, and this is precisely what Euclid proves
in his proposition I. 47. It appears probable therefore
that Buclid found the proposition proved by means of
proportions and, by a stroke of genius, gave the proof a dif-
ferent form in order to get the proposition into Book I in
accordance with his general arrangement of the Elements.

(v) Application of areas and geometrical algebra.

For want of the necessary notation the Greeks had no
algebra in our sense. They were obliged to use geometry
as a substitute for algebraical operations; and the result
is that a large part of their geometry may appropriately
be called ‘geometrical algebra’. One of the two main
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i methods at their disposal was the ‘application of al:eas’
. (the other being the method of proportions). We have it on
" the authority of Eudemus, cited by Proclus, that the

method of ‘application of areas’ (mapafos) 7@v xwpiwv),

 their exceeding (SmepBolif), and their falling-short (éMeufus),
. was the discovery of the Pythagoreans. The methoq. is
* fundamental in Greek geometry, and gives the geometrical
. golution of the equivalent of algebraic equations of a degree
" ot higher than the second.

The simplest case is ‘application’ pure and simple, as
in Eucl. I. 44, 45: To apply to a given straight line as ba'se
a parallelogram containing a given angle and equal in

. area to a given triangle or rectilineal figure. This is
~ equivalent to the operation of finding x where ax = be,
~ j.e. of dividing the product bc by a.

The general case where the applied area ‘exceeds’ or
‘falls short’ is enunciated thus: Toapply to a given straight
line a parallelogram equal to a given rectilineal figure a‘md
(1) exceeding or (2) falling-short by a parallelogram similar
to a given parallelogram. In the accompanying figures

R R
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/ 1 / 1 [ 1
/ ! ! / ! /
% / / f ' / c
A B P Il /' /
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the parallelograms AR are applied to the straight line AB,
but in the first figure the base AP overlaps AB and the
parallelogram exceeds [the parallelogram on AB itself] by
the parallelogram BR, while in the second figure the base
AP falls short of 4B and the parallelogram AR falls short
by the parallelogram BR. The problem is, given AB, to
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draw the figure so that the parallelogram AR shall be equal
to a given area (C, say), while the excess or defect BR iy
similar to a given parallelogram. What has in effect to ba
done is to determine the size of the excess or defect BR
(its shape is determined by the given figure to which it hag
to be similar); that is to say, to determine one of the sideg "
BP, PR in such a way that, when the figure is completed,
the parallelogram AR may be equal to C. Let the ratio
of BP to PR be that of b to ¢, and suppose that BP =x. Let
AB=a. Then AP=a+x and PR= gx Now the area
of the required parallelogram is m.AP.PR, that is,
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142+ b%, and we equate the square root of this to the side
of the complete square on the left hand. The Greek geo-
" metrical procedure was the exact equivalent, as we see
from the particular case solved by Euclid in II. 11. We
‘have to divide AB at G so that AB.BG
' _A@2. If AB=a, AG =z, thisisequiva-
Jent to

a (a—x) =a* o Bild
or tar=at.
Buclid bisects AD, the side of the /
: square on 4B, at F, and joins EB. Then, ¢
- after producing £ A to Fsothat EF = EB,
" he makes AG equal to AF.
Now EB%*=1a%+a? D
' =(x+3%a)? from above.
" And EF = EB; therefore EF =xz+3}a, so that AF =z,
~ which is therefore found.

The solutions of the cases

(at+x)z=>b>

- are connected with Eucl. II. 5, 6. These propositions are
- in the form of theorems. But suppose e.g. that, in the
figureof I1. 5, AB=a, BD =x.

c : ; ;
m (a+x) 5% where m is a certain constant depending on

the size of the given angle BPR (actually the sine of that g
angle). Hence the equation to be solved is

m(aix)%x:C’.

In the case of defect, corresponding to the negative sign,
the possibility of a solution is subject to a certain condition.
Euclid actually proves the necessary condition in that

case, and gives the geometrical solution of the two cases
(VI. 27-9).

The cases arising most commonly in Greek geometry T}fr;)x—rec tongle AH Ao e ) R epiom
are simpler cases in which the parallelogram to be applied (¢ - g L/ 7o
is a rectangle and the excess or defect is a square. The =gnomon NOP. K G N7 A M
corresponding equation is then of the form If, then, the area of the P
(@+a)z=b2. gnomon (=52, say) is given,
65 e we have the equation Q
To solve this equation we should first, if necessary, e, E G F
change the sign throughout so as to make the term in P 2 ’b2

2 positive, then add }a? on both sides so as to make the

left side a complete square. We have then on the right hand To solve this equation, we add }a* to both sides and
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equate (} a—x) to the square root of (} a®>—b?). (For a real

solution, therefore, b2 must not exceed +a?)

The geometrical equivalent is this. Bisect 4B at ¢ and

draw CQ at right angles to AB and of length equal to b.
Then, with Q as centre and $a as radius, draw a circle,
If {a > b, the circle will cut OB in some point D.

By construction, CD? = QD2—Q0C2 = 1a?—b%; and, by
the equation, this is equal to ((a—=z)%. Thus by find-
ing D we have found OD or ta—z, and z, or DB, is
determined.

It is important to note that Apollonius employs the
terminology of ‘application of areas’ to describe the funda-
mental properties of the three conics. These properties are
equivalent to the following Cartesian equations referred
to axes which are in general oblique:

Yy =px (the parabola),
Y2 =px -{-g 22 (the hyperbola),

yi=pzx —g 22 (the ellipse),

where d is the diameter of reference and P the correspond-
ing ‘parameter’. This is the origin of the. names which
were applied to the three conics for the first time by
Apollonius himself: parabola = ‘application’, hyperbola =
‘exceeding’, ellipse =‘falling-short’,

The problem of Eucl. II. 14 is dependent on 1. 44, 45,
and is the equivalent of the solution of the pure quadratic
#2=4, or the extraction of the square root.

The whole of Euclid’s Book IT, with the section of Book I
from Prop. 42 to the end, may be said to deal with the
transformation of areas (or the sums or differences of areas)
of rectilineal figures into equivalent areas of different
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1 shape or composition by means of ‘application’ and the

use of the theorem of I. 47. A characteristic of Book IT is
the use of the gnomon, which is essentially Pythagoreéjm.
Pythagorean, too, are the theorems of II. 9, 10, Wl.nch
are not only very useful in geometry, but were specific-
ally used for the purpose of proving the property of the
successive ‘side’- and ‘diameter’-numbers (cf. pp. 55-7
above).

The quantitative comparison of areas could be made by
means of proportions, the other main method employed
in the geometrical algebra. The ratio of one area to another
(or of the content of one solid figure to that of another)
could be expressed as a ratio between straight lines, and
such ratios could be compounded or otherwise manipulated
to any desired extent.

() The vrrational.

The discovery of the incommensurable by the Pytha-
goreans was bound to cause a great sensation, the more
so as it would immediately be seen to throw doubt on so
much of the Pythagorean proofs of theorems in geometry
as rested on their (arithmetical) theory of proportion. To
avoid the impasse, it would be necessary to seek proofs
on other lines where possible ; but geometry undoubtedly
suffered a serious set-back pending the discovery by
Eudoxus (408-355 B.c.) of the new theory of proportion
applicable to commensurable and incommensurable magni-
tudes alike. In the meantime the position was so incon-
venient that we can understand a desire on the part of the
inner circle of the Pythagoreans that the discovery should
not bécome known to the profane. This may, perhaps,
account for the legend that the first of the Pythagoreans
(whether it was Hippasus or another) who made it public
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perished at sea for his impiety, or (according to another

version) was banished from the community and had a
tomb erected for him as if he were dead.

(€) The five regular solids.

Proclus, speaking of Pythagoras, says in parenthesis
that, in addition to a theory of proportionals, he discovered
‘the putting-together of the cosmic figures’, i.e. the five
regular solids. Next we have the story that Hippasus ‘was
a Pythagorean, but, owing to his having been the first to
publish the (construction of the) sphere from the twelve
pentagons (i.e. the inscribing of the dodecahedron in a
sphere) perished by shipwreck for his impiety, but received
credit for the discovery although it really belonged to Him,
for it is thus that they refer to Pythagoras, and they do
not call him by his name’.

Now in what sense, if at all, did Pythagoras or the
Pythagoreans discover the ‘putting-together’ of the five
regular solids? Some light is thrown on this question by
the procedure of Plato in the TWmaeus. Plato there shows
how to construct the regular solids in the elementary sense
of putting triangles and pentagons together to form their
faces. He forms a square from four isosceles right-angled
triangles, and an equilateral triangle from three pairs of
triangles which are the halves of equal equilateral triangles
cut into two by bisecting one of the angles. Then he forms
solid angles by putting together (1) squares three by three,
(2) equilateral triangles three by three, four by four, and
five by five respectively; the first figure so formed is a
cube with eight solid angles, the next three are the
tetrahedron, octahedron, and icosahedron respectively.
The fifth figure, the dodecahedron, has pentagonal faces,
and Plato forms solid angles by putting together equal
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.- pentagons three by three ; the result is a regular solid with
~ twelve faces and twenty solid angles. :

There is nothing in all this that would be beyond

. Pythagoras or the Pythagoreans, provided that the con-

struction of the regular pentagon was known to them;

the method of formation of the solids agrees well with the

known fact that the Pythagoreans put angles of certain
regular figures together round a point and showed that
only three of such angles would fill up the space in one
plane round the point. Moreover, there is evidence of
the existence of dodecahedra in very early times. Thus
a regular dodecahedron of Etruscan origin discovered on
Monte Loffa (Colli Euganei, near Padua) in 1885 is held
to date from the first half of the first millennium B.c. Itis
possible, therefore, that Pythagoras or the Pythagoreans
had actually seen such a dodecahedron.

As regards the regular pentagon, we may observe that
the construction of it in Euclid, Book IV, depends on the
construction of a certain isosceles triangle, which again

3

depends on the problem of cutting a straight line ‘in
| A

c D

extreme and mean ratio’. The last-named problem is cer-
tainly Pythagorean, being a simple case of ‘application of
areas’. The construction of the regular pentagon was,
therefore, well within the powers of the Pythagoreans. It
may have been evolved in some such way as this. Suppose
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1. the close connexion between the two figures could
be missed. :

hat the dodecahedron is inscribable in a sphere would
;;. ably be inferred from a consideration of its regular
mation, without constructing the sphere and finding
e 'centre of it in the scientific manner of Eucl. XIII. 17,
Chere the relation between an edge of the dodecahedron
-nd the radius of the sphere is also found : an investigation
bably due to Theaetetus. For, aceordmg to Suidas,
Theactetus was the first to ‘write upon’ (or ‘construct’)
he five regular solids, which probably means that he was
the first to construct them theoretically and to investigate
their relations with the circumscribing spheres and with
) O another. The scholium No. 1 to Euclid’s Book XIII
;;;‘ of that Book that it is about ‘the five so-called
“tomc ﬁgures whlch however do not belong to Plato,
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the pentagon constructed, as ABCDE. Join AC, AD, O
Now the Pythagoreans knew the theorems about the sup
of the angles of any triangle and the sum of the interigy
angles of any polygon. They would, therefore, see tha
each angle, as 4BC, of the regular pentagon is ¢ths of
a right angle. It follows that, in the isosceles trla,ng'
BAC, the angle BAC is 2ths of a right angle. So is the
angle £AD, and so is the angle ECD, for the like reason
Subtractlng the two angles BAO' DAE from the angle
BAE (which is 8ths of a right angle), we see that the angle
CAD is 2ths of a right angle. So is the angle ACE, for
the like reason. It follows that, in the isosceles triangle
ACD, each of the base angles is double of the vertica
angle.

Again, if AD, CE meet in F, OFD is an isosceles trlangle
because the angle CFD, being equal to the sum of the
angles CAF, ACF,is tths of a right angle, and is therefore bhre
equal to the angle C DF Hence CD = OF = AF. ‘ the cube, the pyramid, and the dodecahedron, whlle the

Moreover, the triangles ACD, CDF are equiangular and octahedron and the icosahedron are due to Theaetetus’.

therefore similar; may well have been the case.
therefore AC 0D =CD | DP (0) Pythagorean astronomy
or AD : AF = AF : FD,

~ In astronomy Pythagoras realized that the earth (and
no doubt each of the other heavenly bodies also) is
spherical in form, and he also knew that the sun, moon,
and planets have movements of their own in a sense
opposite to that of the daily rotation. So far as we know,
however, he kept the earth in the centre. His successors
in the school (one Hicetas of Syracuse and Philolaus are
alternatively credited with this innovation) deposed the
‘earth from its place in the centre and made it revolve,
like the sun, the moon, and the planets, and an assumed
“additional body, the ‘counter-earth’, round the ‘central

that is, 4D is divided at F in extreme and mean ratio.

If, therefore, AD is given, F can be found, and we can
construct the regular pentagon on CD as base.

The interest of the Pythagoreans in the regular penta-
gon is further attested by the ‘triple interwoven triangle’
or pentagram, i.e. the star-pentagon which, according to
Lucian and the scholiast to the Clouds of Aristophanes,
was used by the Pythagoreans as a symbol of recognition
between members of the same school and was called by
them Health. I have drawn the star-pentagon separately,
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constituent of the geometrical algebra by which they
effected the geometrical equivalent of addition, subtrac-
‘tion, division, extraction of the square root, and finally
(with the help of the theorem of the square on the hy-
potenuse and proportions) the complete solution of the
general quadratic equation 224+pg+g=0 so far as it has
‘real roots.

3. They had a theory of proportion pretty fully de-
veloped, though it was only applicable to commensurable
“magnitudes, being presumably a numerical theory on the
ines of Euclid, Book VII. They were aware of the pro-
perties of similar figures ; for Plutarch attributes to Pytha-
goras himself the solution of the problem of describing
g rectilineal figure similar to one given figure and equal
in area to another, and this implies a knowledge of the
theorem that similar rectilineal figures are in the dupli-
cate ratio of corresponding sides. Much of the content of
" Buclid, Book VI, must, therefore, have been known to the
- Pythagoreans.

. 4. They had discovered, or were aware of the existence of,
at least three of the regular solids. There is no reason to
" doubt that they could construct a regular pentagon in the
- manner of KEucl. IV. 10, 11.

5. They discovered the existence of the incommensur-
able in at least one case, that of the diagonal of a square
“in relation to its side; and they also devised a method of
obtaining closer and closer approximations to the value
of /2 in the form of numerical fractions, by means of the
geries of ‘side’- and ‘diameter’-numbers which are the
- successive solutions of the equations
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fire’, wherein was located the governing principle which
directs the movement and activity of the universe. The
counter-earth, which accompanies the earth and revolveg
in a smaller orbit, is not seen by us because the hemisphere
of the earth on which we live is turned away from the
counter-earth. As the Pythagoreans, according to Aris-
totle, considered that eclipses of the moon occur owing to
the interposition, between it and the sun, sometimes of
the earth, sometimes of the counter-earth, the latter may
have been invented in order to account for the frequency
of lunar eclipses as compared with solar.

SUMMARY.

It may be useful to summarize the contribution of
Pythagoras and the Pythagoreans to geometry. With
them geometry became a scientific subject studied for its
own sake; indeed for Pythagoras geometry was science
itself (‘geometry was called by Pythagoras “inquiry”,
{oropia’). Pythagoras explored the first principles, starting -
with definitions, and built upon them a logically con-
nected system. :

The positive achievements of the Pythagoreans in
geometry were these: :

1. They knew the properties of parallels, and used them
to prove generally that the sum of the angles of any
triangle is equal to two right angles. They deduced the
well-known theorems about the sums of (1) the exterior,
(2) the interior, angles of any polygon.

2. The transformation of areas of rectilineal figures, and
the sums and differences of such areas, into equivalent
areas of different shapes, in the manner of Eucl. I. 42-7
and Eucl. IT, was their creation. To this end they invented
the powerful method of ‘application of areas’, the main

2 xZ_ y2 — i 1,
: for which purpose they used the theorems of Eucl. II. 9, 10.



