- 1. (a) On what interval is $f(x) = x \ln(x)$ decreasing?
 - (b) On what interval is f concave upward?
- 2. Let $f(x) = \log_a(3x^2 2)$. For what value of *a* is f'(1) = 3?
- 3. Use logarithmic differentiation to find the derivative of the function.
 - (a) $y = \sqrt{x}e^{x^2}(x^2+1)^{10}$ (b) $y = x^{\cos(x)}$
- 4. Find a formula for $f^{(n)}(x)$ of $f(x) = \ln (x-1)$.
- 5. Graphs of the *position* functions of two particles are shown, where t is measured in seconds. When is each particle speeding up? When is it slowing down? Explain.

- 6. If a ball is thrown vertically upward with a velocity of 80 ft/s, then its height after t seconds is $s = 80t 16t^2$.
 - (a) What is the maximum height reached by the ball?
 - (b) What is the velocity of the ball when it is 96 ft above the ground on its way up? On its way down?

7. The number of yeast cells in a laboratory culture increases rapidly initially but levels off eventually. The population is modeled by the function

$$n = f(t) = \frac{a}{1 + be^{-0.7t}}$$

where t is measured in hours. At time t = 0 the population is 20 cells and is increasing at a rate of 12 cells/hour. Find the values of a and b. According to this model, what happens to the yeast population in the long run?

8. The cost function for production of a commodity is

$$C(x) = 339 + 25x - 0.09x^2 + 0.0004x^3$$

- (a) Find and interpret C'(100).
- (b) Compare C'(100) with the cost of producing the 101st item.
- 9. The table shows the population of Nepal (in millions) as of June 30 of the given year. Use a linear approximation to estimate the population at midyear in 1989. Use another linear approximation to predict the population in 2010.

t	1985	1990	1995	2000	2005
N(t)	17.04	19.33	21.91	24.70	27.68

- 10. Find the linear approximation of the function $g(x) = \sqrt[3]{1+x}$ at a = 0 and use it to approximate the numbers $\sqrt[3]{0.95}$ and $\sqrt[3]{1.1}$. Illustrate by graphing g and the tangent line.
- 11. Explain, in terms of linear approximations or differentials, why the approximation is reasonable.

$$(1.01)^6 \approx 1.06$$

12. Use differentials to estimate the amount of paint needed to apply a coat of paint 0.05 cm thick to a hemispherical dome with diameter 50 m.