1. A graph of the piecewise linear function f(x) and table of the functions g(x) and g'(x) are shown below.

x	0	1	2	3	4
g(x)	2	5	9	11	8
g'(x)	3	4	2	-3	-4

- (a) Given h(x) = f(x)g(x), find h'(1).
 (b) Given k(x) = f(x)/g(x), find k'(3).
 (c) l(x) = g(x)/\sqrt{x}, find l'(4).
- 2. If f is a differentiable function, find an expression for the derivative fo the following function:

$$y = \frac{1 + xf(x)}{\sqrt{x}}$$

- 3. A manufacturer produces bolts of a fabric with a fixed width. The quantity q of this fabric (measured in yards) that is sold is a function of the selling price p (in dollars per yard), so we can write q = f(p). Then the total revenue earned with selling price p is R(p) = pf(p).
 - (a) What does it mean to say that f(20) = 10,000 and f'(20) = -350?
 - (b) Assuming the values in part (a), find R'(20) and interpret your answer.
- 4. On what interval is the function $f(x) = x^3 e^x$ increasing?
- 5. On what interval is the function $f(x) = x^2 e^x$ concave downward?
- 6. (a) If F(x) = f(x)g(x), where f and g have derivatives of all orders, show that F'' = f''g + 2f'g' + fg''.
 - (b) Find similar formulas for F''' and $F^{(4)}$.
 - (c) Guess a formula for $F^{(n)}$.

- 7. Prove that $\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x)$.
- 8. A ladder 10 ft long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta = \frac{\pi}{3}$?
- 9. Find the given derivative by finding the first few derivatives and observing the pattern that occurs.

(a)
$$\frac{d^{99}}{dx^{99}}(\sin(x))$$

(b) $\frac{d^{35}}{dx^{35}}(x\sin(x))$

Optional Challenge Problems

How many tangent lines to the curve y = x/(x+1) pass through the point (1,2)? At which points do these tangent lines touch the curve?