HW) 5-Evens

See, 3.2
(6) 2 ways to lan

$$
\left.\begin{array}{c}
2 \text { ways to land a coin } \\
6 \text { wayt to land a die } \\
5 z \text { ways to draw a card }
\end{array}\right\} \Rightarrow \begin{gathered}
2 \cdot 6 \cdot 52 \\
=624 \\
\text { possibli outcomest }
\end{gathered}
$$

If dhe die is to land on 3, Whure are

$$
2 \cdot 1 \cdot 52=104 \text { ways /outeomet }
$$

If dhe die is to land on an oold \#, thue are
3 odd \#s,
$2.3 .52=312$ outcomes

$$
1,3,5
$$

If dhe die is to land on an odd \& dhe cand is to be a bing, othere are

(8) 10 torsest means luyth - 10 strings, ench tam of which is H or T:

(10)

$$
6 \cdot 6 \cdot 6 \cdot 6=6^{4}=1269 \text { post. outcomes }
$$

Sec. 3.3
(2)

(8) (a) 3 vowels, A, E, I
 $\binom{$ no upctition, }{ list letter a vowel }

I must have been tired that night.
Why did I use the consonants instead of the rest of the letters in (a) and (b)?
(b)

(c) no repetitions, eyactly , A:

Thue are 5 stote from which to choore for A. Oner that has been fifed, Chise are is slota lff in which to permute the remaining 9 lither:

$$
5 \cdot p(9,4)=5 \cdot \frac{9!}{(9-4)!}=\begin{gathered}
15120 \\
\text { wayt }
\end{gathered}
$$

(10) Reputition allowed, P, R, O, F,S \& last lettor is S, lingth 6 , O used ≥ 2 times.

Thue remain 5 slots, 2 of which are to be filled with O 's, \& dhure are $\binom{5}{2}=10$ wayt to do ahis.

The remain 3 slot e in which we can put any of the 6 litas:

$$
\binom{5}{2} \cdot 6^{3}=10 \cdot 6^{3}=2160 \text { ways }
$$

Sue. 3.4
(2) For whid n does n ! have s n digitat?
$A_{0} n=1, \ldots, 24 \quad 25!$ has 26 digits while 24 ! has 24 .

In fact, hist how Ireconed: after wasting some time looking at 1! through 6! $=720$, I decided text hook at

$$
q!=362880 \text { hat } 6 \text { digits }
$$

and after oh at we multiply by 2 -digit numbers: $10,11, \ldots$, so are gain a digit,
ewe b time
maybe two, so I decided to take sumplex:

$$
\begin{aligned}
& 15!=1,307,674,368,000 \text { hat } 13 \text { digetta } \\
& 20!=2,432,902,008,176,640,000
\end{aligned}
$$

hat 19 otigits
Getting close!

$$
25!=15,571,210,043,330,985,984,000,000
$$

hat 26 digits ! Sneers!'

$$
25=n>26=\text { digits }
$$

I bactotreverd, \& found chat 24! has 24 digits. Clearly 23 \&t below will only lore digits one or more at a time, so we are done.
(4)

$$
\begin{aligned}
& \frac{100!}{95!}=\frac{100 \cdot 99 \cdot 98 \cdot 97 \cdot 96 \cdot 95!}{95!} \\
& =100.99 \ldots 96 \\
& =9,034,502,400 \text { (I used Wolfram } \\
& \text { to comput athis produet). } \\
& -1)(100-2)(100-3)(100-4) \\
& \text { by hand: } \quad=100^{5}+\underbrace{(-1) 100^{4}+(-2) 100^{4} \cdots+(-4) 100^{4}} \\
& =(-10) \cdot 100^{4} \\
& +\underbrace{(-1)(-2) 10^{3}+(-1)(-3) 10^{3}+\cdots} \\
& =[(-1)(-2)+(-1)(-3)+(-1)(-4) \\
& +(-2)(-3)+(-2)(-4) \\
& +(-3)(-4)] 100^{3} \\
& =35.100^{3} \\
& =[-6-8-12-24] \cdot 100^{2} \\
& +\underbrace{(-1)(-2)(-3) 10^{2}+(-1)(-2)(-4) 10^{2}+\cdots} \\
& =(-50) \cdot 100^{2} \\
& =[(-1)(-2)(-3)+(-1)(-2)(-4) \\
& (-1)(-3)(-4)+(-2)(-3)(-4) 7
\end{aligned}
$$

$$
\begin{aligned}
& +\underbrace{(-1)(-2)(-3)(-4) 100}_{=24.100} \\
& =100^{5}-10 \cdot 100^{4}+35 \cdot 100^{3}-50 \cdot 100^{2}+24 \cdot 100 \\
& =100\left(100^{4}-10 \cdot 100^{3}+3 \cdot 100^{2}-50 \cdot 100+24\right) \\
& \left.\begin{array}{rl}
=100 & (100,000,000 \\
-10,000,000 \\
3
\end{array}\right\}=90,000,000 \\
& \left.\begin{array}{r}
+30,000 \\
-5000 \\
+\quad 24 \\
\hline
\end{array}\right\} \\
& =9034502400
\end{aligned}
$$

(6) Lets first study 10! \& undurstandit:

$$
10!=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1
$$

no otter 5 in here,
so no 10 in here

$$
N_{\text {ow }}
$$

* 95.92

$$
=(90+5)(90+2)
$$

$$
\begin{aligned}
& =9^{2} \cdot 10^{2}+(2+5) \cdot 90+1 \\
& =10\left(9^{2} \cdot 10+7 \cdot 9+1\right)
\end{aligned}
$$

$$
=30.9
$$

$$
5 \cdots \leq-1
$$

+2 o's fr. rows other 9 rows
$3+9 \cdot 2=210^{\prime}$ eth prod.

$=8740 \quad=3+9 \cdot 2=210$ 多 $=3$
two 5's, which get multiplied with 2's each from any of the evens in that row.
So add 3 to 21 to get 24 .
(8) odd digit postibitites: $1,3,5,7$ may be permuted in $4!=24$ ways,
even digit possibilities: $2,4,6$ may be permuted in 3! ways, but we have to also consider chose odds:

- odds followed by evens (eeg. $1,3,5,7,2,4,6$)
- even, odds, 2 event (egg. $2, \underline{1,3,5,7,4,6)}$
- zevens, odds, even $(\log \cdot 2,4,1,3,5,7,6)$
- event followed by ada (eg. 2, 4, 6, 1,3,5,7)

Each of these 4 has $4!\cdot 3!=24 \cdot 6=144$
possibilities, so in total we have

$$
4.144=576 \text { ways }
$$

(12) Thue are 13 clubs, so 39 non-clubt, in a deak, while dhue are

$$
\begin{aligned}
P(39,7)=\frac{39!}{(39-7)!} & =\frac{39!}{32!} \\
& =77,519,992,480
\end{aligned}
$$

wayt to permute 7 of theme.
(18)

$$
\text { Lif } \Gamma(x) \stackrel{d f}{=} \int_{0}^{\infty} f^{x-1} e^{-t} d t . ~ \begin{aligned}
\Gamma(1) & =\int_{0}^{\infty} f^{1-1} e^{-t} d t \\
& =\int_{0}^{\infty} e^{-t} d t \\
& =\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-t} \\
& =\lim _{b \rightarrow \infty}-\left.e^{-t}\right|_{0} ^{b} \\
& =\lim _{b \rightarrow \infty} 1-e^{-b} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& F(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t \\
& =\int_{0}^{\infty} t e^{-t} d t \quad\left(\begin{array}{l}
\text { by } \\
a=t \quad v: \\
u=t \\
u^{\prime}=1 \\
u^{\prime}=e^{-t} \\
\end{array}\right) \\
& =\lim _{b \rightarrow \infty}(\underbrace{\left[-t e^{-t}\right]_{0}^{b}}+\int_{0}^{\left.\int_{0}^{b} e^{-t} d t\right)} \underbrace{}_{\rightarrow 1 \text { at ahove }} \\
& =-\frac{b}{e^{b}} \rightarrow 0 \\
& =\Gamma(1) \\
& \text { by L'Hopitala } \\
& =1 \\
& F(3)=\int_{0}^{\infty} t^{3-1} e^{-t} d t \\
& =\int_{0}^{\infty} t^{2} e^{-t} d t \quad\left(\begin{array}{ll}
u=t^{2} & v=-e^{-t} \\
u^{\prime}=2 t & v^{\prime}=e^{-t}
\end{array}\right) \\
& =\underbrace{\left[-t^{2} e^{-t}\right]_{0}^{\infty}}_{=0 \text { by } L^{\prime} H}+2 \underbrace{\int_{0}^{\infty} t e^{-t} d t}_{0} \\
& =\Gamma(2)=1 \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
\Gamma(4)=\int_{0}^{\infty} f^{4-1} e^{-t} d t= & \int_{0}^{\infty} t^{3} e^{-t} d t \quad\left(\begin{array}{l}
u=t^{3} \\
u^{\prime}=3 t^{2} \\
v=-e^{-t} \\
v^{\prime}=e^{t}
\end{array}\right) \\
= & \underbrace{\left[t^{3} e^{-t}\right]_{0}^{\infty}}_{=0 \text { by }}+L^{\prime} H y \underbrace{\int_{0}^{\infty} t^{2} e^{-t} d t}_{=\Gamma(3)}=2 \\
= & 3.2
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma(1)=1=0! \\
& \Gamma(2)=1=1! \\
& \Gamma(3)=2=2! \\
& \Gamma(4)=3 \cdot 2=3!
\end{aligned}
$$

Section 3.5
(2) $|A|=100 \Rightarrow\binom{100}{5}=75,287,520$ subrets of A have sige 5 .
(4)

$$
\begin{gathered}
|\{X|X \in P(B),|X|=6\} \mid=28 \\
\Rightarrow\binom{n}{6}=28 \\
\Rightarrow \frac{n!}{6!(n-6)!}=28
\end{gathered}
$$

Well, $\binom{7}{6}=7,\binom{8}{6}=\frac{8 \cdot 7 \cdot 6 x}{41,2!}=28$

$$
\Rightarrow n=8
$$

(14)

$$
\begin{aligned}
0 \leq k \leq n \Longrightarrow\binom{n}{k} & =\frac{n!}{k!(n-k)!} \\
= & \frac{n!}{(n-k)!(n-(n-k))!}=\left(\begin{array}{l}
n-k) \\
\\
\\
\\
\end{array}=n-(n-k)\right. \\
& =k
\end{aligned}
$$

(18)

$$
\begin{aligned}
& \binom{10}{0}=1 \quad \text { ha } 5 \text { " "1's } \\
& \binom{10}{2}=\frac{10 \cdot 9}{2}=45 \text { have } 2 \text { ""'s's } \\
& \binom{10}{4}=\frac{10 \cdot 3 \cdot 8 \cdot 8 \cdot 7}{4 \cdot 3 \cdot-7-1}=210 \text { have } 4 \text { i's } \\
& \binom{10}{6}=\binom{10}{4}=210 \text { have } 61 ' s \\
& \binom{10}{8}=\binom{10}{2}=45 \text { have } 8 \mathrm{ls}
\end{aligned}
$$

$$
\begin{aligned}
&+\quad\binom{10}{10}=1 \text { has } 101 / \mathrm{s} \\
&=1+2 \cdot 45+2-210+1 \\
&=512
\end{aligned}
$$

Section 3,6
(2) $\binom{13}{8}=1287$
(6)

$$
\begin{aligned}
z^{n}=(1+1)^{n} & =\sum_{k=0}^{n}\binom{n}{k} 1^{n-k}, k \\
& =\sum_{k=0}^{n}\binom{n}{k}
\end{aligned}
$$

(12) $\quad\binom{n}{k}\binom{k}{m}=\frac{n!}{k!(n-k)!} \cdot \frac{k!}{m!(k-m)!}$
while

$$
\begin{gathered}
\binom{n}{m}\binom{n-m}{k-m}=\frac{n!}{m!(n-m)!} \cdot \frac{(n-m)!}{(k-m)!\underbrace{(n-m-(k-m))!}_{=(n-k)!}}
\end{gathered}
$$

So chey are equal.

