It can be helpful from time to time to sketch a graph or picture to strengthen our understanding of concepts and ideas. Use the following sketches to answer problems below.

1. A sketch of the function $f(x)$ is given below:

If $f(5)=12$ and $f^{\prime}(5)=2$, then find the coordinates of A, B, and C.
2. A sketch of the function $g(x)$ is given below:

If possible, find each of the following. Write "Not enough information" where appropriate.
(a) $g(3)=$
(b) $g(2.8)=$
(c) $g^{-1}(7)=$
(d) $g^{\prime}(3)=$
(e) $g^{\prime}(2.8)=$
3. The president announces that the national deficit is increasing, but at a decreasing rate. Interpret this statement in terms of a function and its derivatives.
4. Sketch the graph of a function that satisfies all of the given conditions.

- $f^{\prime}(1)=f^{\prime}(-1)=0$
- $f^{\prime}(x)<0$ if $|x|<1$
- $f^{\prime}(x)>0$ if $1<|x|<2$
- $f^{\prime}(x)=-1$ if $|x|>2$
- $f^{\prime \prime}(x)<0$ if $-2<x<0$
- inflection point $(0,1)$

5. Suppose $f^{\prime}(x)=x e^{-x^{2}}$
(a) On what interval is f increasing? On what interval is f decreasing?
(b) Does f have a maximum value? Minimum value?
6. On what interval is the function $f(x)=x^{3}-4 x^{2}+5 x$ concave upward?
7. The equation $y^{\prime \prime}+y^{\prime}-2 y=x^{2}$ is called a differential equation because it involves an unknown function y and its derivatives y^{\prime} and $y^{\prime \prime}$. Find constants A, B, and C such that the function $y=A x^{2}+B x+C$ satisfies this equation. (Differential equations will be studied in detail in Calculus 2).
8. Suppose the curve $y=x^{4}+a x^{3}+b x^{2}+c x+d$ has a tangent line when $x=0$ with equation $y=2 x+1$ and a tangent line when $x=1$ with equation $y=2-3 x$. Find the values of a, b, c, and d.

Optional Challenge Problems

Find a possible formula for each function in the derivative matching card activity from last week (see the "Activities" page of the course website).

