1. Find the limit. Use l'Hôpital's Rule if appropriate. If there is a more elementary method, consider using it. If l'Hôpital's Rule does not apply, explain why.

$$
\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}
$$

2. Use l'Hôpital's Rule to help find the asymptotes of f. Then use them, together with the information from f^{\prime} and $f^{\prime \prime}$, to sketch the graph. Check your work with a graphing device or program.

$$
f(x)=x e^{-x^{2}}
$$

3. Prove that

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{p}}=0
$$

for any number $p>0$. This shows that the logarithmic function approaches ∞ more slowly than any power of x.
4. If an object with mass m is dropped from rest, one model for its speed v after t seconds, taking air resistance into account is

$$
v=\frac{m g}{c}\left(1-e^{-c t / m}\right)
$$

where g is the acceleration due to gravity and c is a positive constant. (In Calculus 2 we will be able to deduce this equation from the assumption that the air resistance is proportional to the speed of the object; c is the proportionality constant.)
(a) Calculate $\lim _{t \rightarrow \infty} v$. What is the meaning of this limit?
(b) For fixed t, use l'Hôpital's Rule to calculate $\lim _{c \rightarrow 0^{+}} v$. What can you conclude about the velocity of a falling object in a vacuum?
5. If f^{\prime} is continuous, $f(2)=0$, and $f^{\prime}(2)=7$, evaluate

$$
\lim _{x \rightarrow 0} \frac{f(2+3 x)+f(2+5 x)}{x}
$$

Optional Challenge Problem

This problem will help improve your algebra skills.
Graph the function $f(x)=(x-2)^{1 / 3} x^{2 / 3}$. Include calculation of the first and second derivatives and full analysis of the increasing/decreasing behavior, local extrema, concavity and inflection points, and the end behavior.

