Examples and Exercises in Coordinate Representations (3/19/19)

Alex Nita

1 Examples and Exercises in \mathbb{R}^2

Example 1.1 Find the β -representation of the $\pi/2$ -rotation operator, which in standard coordinates appears as

$$[R_{\pi/2}]_{\sigma} = \begin{pmatrix} \cos(\pi/2) & -\sin(\pi/2) \\ \sin(\pi/2) & \cos(\pi/2) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \operatorname{GL}(2, \mathbb{R})$$

where

Т

$$\beta = (\mathbf{b}_1, \mathbf{b}_2) = \left(\begin{pmatrix} 2\\1 \end{pmatrix}, \begin{pmatrix} -1\\1 \end{pmatrix} \right)$$

Solution: Use the change-of-coordinates formula for operators

$$[T]_{\gamma} = M_{\beta,\gamma}[T]_{\beta}M_{\beta,\gamma}^{-1}$$

given in Proposition 6.18, 'Bases, Coordinates and Representations' with $T = R_{\pi/2}$, replacing β with σ and γ with β :

$$[R_{\pi/2}]_{\beta} = M_{\sigma,\beta}[R_{\pi/2}]_{\sigma}M_{\sigma,\beta}^{-1}$$

= $M_{\beta,\sigma}^{-1}[R_{\pi/2}]_{\sigma}M_{\beta,\sigma}$
= $\begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$
= $\frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$
= $\frac{1}{3} \begin{pmatrix} 1 & -2 \\ 5 & -1 \end{pmatrix}$

Notice how different the rotation matrix looks in non-standard coordinates!

Exercise 1.2 Find the γ -representation of the $\pi/2$ rotation operator $R_{\pi/2} \in \mathrm{GL}(\mathbb{R}^2)$, where

$$\gamma = (\mathbf{c}_1, \mathbf{c}_2) = \left(\begin{pmatrix} 3\\2 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix} \right)$$

Example 1.3 Compute the β -representation of the reflection across the line y = -2x, with

$$\beta = (\mathbf{b}_1, \mathbf{b}_2) = \left(\begin{pmatrix} 2\\1 \end{pmatrix}, \begin{pmatrix} -1\\1 \end{pmatrix} \right)$$

Solution: Let us first find a *natural* basis δ for R_{ℓ} . The line

$$\ell = \left\{ \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y = -2x \right\}$$

has basis vector $\mathbf{d}_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, which can be gotten from the equation y = -2x by plugging in x = 1. Rotate it by $\pi/2$ to get a basis vector for the orthogonal line ℓ^{\perp} , $y = \frac{1}{2}x$:

$$\mathbf{d}_2 = R_{\pi/2}\mathbf{d}_1 = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1\\ -2 \end{pmatrix} = \begin{pmatrix} 2\\ 1 \end{pmatrix}$$

Then we have a basis for \mathbb{R}^2 suited to R_ℓ :

$$\delta = \begin{pmatrix} \mathbf{d}_1, \mathbf{d}_2 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \end{pmatrix}$$

Since $R_{\ell}(\mathbf{d}_1) = \mathbf{d}_1$ and $R_{\ell}(\mathbf{d}_2) = -\mathbf{d}_2$, the δ -representation of R_{ℓ} is simple:

$$[R_{\ell}]_{\delta} = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

Now use the change-of-coordinates formula for operators given in Proposition 6.18, 'Bases, Coordinates and Representations',

$$[T]_{\gamma} = M_{\beta,\gamma}[T]_{\beta}M_{\beta,\gamma}^{-1}$$

replacing γ with β and β with δ , along with its consequence, Proposition 6.19, which allows us to compute $M_{\delta,\beta}$ in terms of the standard basis σ :

$$M_{\delta,eta} = M_{\sigma,eta} M_{\delta,\sigma} = M_{eta,\sigma}^{-1} M_{\delta,\sigma}$$

Here we go:

$$[R_{\ell}]_{\beta} = M_{\delta,\beta}[R_{\ell}]_{\delta}M_{\delta,\beta}^{-1} \qquad (Proposition \ 6.18)$$

$$= M_{\beta,\sigma}^{-1}M_{\delta,\sigma}[R_{\ell}]_{\delta}(M_{\beta,\sigma}^{-1}M_{\delta,\sigma})^{-1} \qquad (Proposition \ 6.19)$$

$$= M_{\beta,\sigma}^{-1}M_{\delta,\sigma}[R_{\ell}]_{\delta}M_{\delta,\sigma}^{-1}M_{\beta,\sigma}$$

$$= \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$$

$$= \boxed{\begin{pmatrix} -1 & \frac{2}{5} \\ 0 & 1 \end{pmatrix}}$$

Verification:

How do we know if we got it right? There is no solution manual, I just made up the example. Well, we know that $R_{\ell}(\mathbf{d}_1) = \mathbf{d}_1$ and $R_{\ell}(\mathbf{d}_2) = -\mathbf{d}_2$ (that's how we got the δ -representation of R_{ℓ} above, after all): Well, we have Theorem 6.16 in 'Bases, Coordinates and Representations,' which tells us $[T(\mathbf{v})]_{\beta} = [T]_{\beta}[\mathbf{v}]_{\beta}$. Let's use it on R_{ℓ} and the basis vectors \mathbf{d}_i : if we computed $[R_{\ell}]_{\beta}$ correctly, the RHS should equal the LHS. The LHS for each \mathbf{d}_i is

$$[R_{\ell}(\mathbf{d}_{1})]_{\beta} = [\mathbf{d}_{1}]_{\beta} = M_{\sigma,\beta}[\mathbf{d}_{1}]_{\sigma} = M_{\beta,\sigma}^{-1}\mathbf{d}_{1}$$
$$= \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

and similarly

$$[R_{\ell}(\mathbf{d}_{2})]_{\beta} = [-\mathbf{d}_{2}]_{\beta} = -M_{\sigma,\beta}[\mathbf{d}_{2}]_{\sigma} = -M_{\beta,\sigma}^{-1}\mathbf{d}_{2}$$
$$= -\binom{2}{1} \binom{-1}{1} \binom{2}{1} = -\frac{1}{3}\binom{1}{-1} \binom{1}{2} \binom{2}{1} = \binom{-1}{0}$$

This, incidentally, gives us $\begin{bmatrix} \mathbf{d}_1 \end{bmatrix}_{\beta} = -\frac{1}{3} \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ and $\begin{bmatrix} \mathbf{d}_2 \end{bmatrix}_{\beta} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Let's make sure these are correct first:

$$-\frac{1}{3}\mathbf{b}_{1} - \frac{5}{3}\mathbf{b}_{2} = -\frac{1}{3}\binom{2}{1} - \frac{5}{3}\binom{-1}{1} = \binom{1}{-2} = \mathbf{d}_{1} \quad \checkmark$$

and secondly,

$$1\mathbf{b}_1 + 0\mathbf{b}_2 = \begin{pmatrix} 2\\1 \end{pmatrix} = \mathbf{d}_2 \quad \checkmark$$

OK! So far so good. Now, if we got $[R_{\ell}]_{\beta}$ right, we should multiply out the RHS for each \mathbf{d}_i and get back what we computed for the LHS:

$$[R_{\ell}]_{\beta}[\mathbf{d}_{1}]_{\beta} = \begin{pmatrix} -1 & \frac{2}{5} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{3} \begin{pmatrix} 1 \\ 5 \end{pmatrix} \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 1 \\ 5 \end{pmatrix} = [\mathbf{d}_{1}]_{\beta} = [R_{\ell}(\mathbf{d}_{1})]_{\beta} \quad \checkmark$$

and

$$[R_{\ell}]_{\beta}[\mathbf{d}_2]_{\beta} = \begin{pmatrix} -1 & \frac{2}{5} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} = [R_{\ell}(\mathbf{d}_2)]_{\beta} \quad \checkmark$$

Exercise 1.4 Compute the γ -representation of the reflection across the line y = -2x, where

$$\gamma = (\mathbf{c}_1, \mathbf{c}_2) = \left(\begin{pmatrix} 3\\2 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix} \right)$$