Quiz 8

1. Let $\mathbf{F}(x,y) = \langle 3x^2, 4y^3 \rangle$.

I

(a) Compute directly $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$ where C_1 is the curve around the top of the unit circle from (1,0) to (-1,0).

Parametrize C_1 : $\mathbf{r}_1(t) = \langle \cos t, \sin t \rangle, 0 \le t \le \pi$. Then,

$$\begin{split} \int_{C_1} \mathbf{F} \cdot d\mathbf{r} &= \int_0^{\pi} \mathbf{F} \left(\mathbf{r}_1(t) \right) \cdot d\mathbf{r}_1'(t) \, dt \\ &= \int_0^{\pi} \langle 3\cos^2 t, 4\sin^3 t \rangle \cdot \langle -\sin t, \cos t \rangle \, dt \\ &= \int_0^{\pi} -3\cos^2 t \sin t + 4\sin^3 t \cos t \, dt \\ &= -3 \int_0^{\pi} \cos^2 t \sin t \, dt + 4 \int_0^{\pi} \sin^3 t \cos t \, dt \\ &= 3 \int_1^{-1} u^2 \, du + 4 \int_0^0 u^3 \, du \\ &= -2 \end{split}$$

(b) Compute directly $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ where C_2 is the straight line curve from (1,0) to (-1,0). Parametrize C_2 : $\mathbf{r}_2(t) = \langle 1, 0 \rangle + t(\langle -1, 0 \rangle - \langle 1, 0 \rangle) = \langle 1 - 2t, 0 \rangle, 0 \le t \le 1$. Then,

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \mathbf{F} (\mathbf{r}_2(t)) \cdot d\mathbf{r}'_2(t) dt$$

= $\int_0^1 \langle 3(1-2t)^2, 4 \cdot 0^3 \rangle \cdot \langle -2, 0 \rangle dt$
= $-6 \int_0^1 1 - 4t + 4t^2 dt$
= $-6 [t - 2t + \frac{4}{3}t^3]_0^1$
= $-6 [1 - 2 + \frac{4}{3}]$
= -2

(c) Show that \mathbf{F} is a continuous gradient vector field, that is $\mathbf{F} = \nabla f$ for some scalar function $f : \mathbb{R}^2 \to \mathbb{R}$, and use this along with the Fundamental Theorem of Line Integrals to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ (Thus, \mathbf{F} is a conservative, or path-independent, vector field.)

If there is such a scalar function $f : \mathbb{R}^2 \to \mathbb{R}$, it will have to satisfy $f_x = 3x^2$ and $f_y = 4y^3$. Well, clearly $f(x, y) = x^3 + y^4$ is one such function, and so $\mathbf{F} = \nabla f$. That \mathbf{F} is continuous follows from the fact that it's component functions $F_1(x, y) = 3x^2$ and $F_2(x, y) = 4y^3$ are polynomials, which are continuous everywhere in \mathbb{R}^2 . Consequently, by the Fundamental Theorem of Calculus for Line Integrals we have that

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(-1,0) - f(1,0) = ((-1)^3 + 0^4) - (1^3 + 0^2) = \boxed{-2}$$

- 2. Let $\mathbf{F} = \langle y, -x \rangle$.
 - (a) Compute the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ directly, where C is the counterclockwise curve along the unit circle starting at (1, 0).

As usual, we parametrize C first: $\mathbf{r}(t) = \langle \cos t, \sin t \rangle, \ 0 \le t \le 2\pi$. Then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_0^{2\pi} \langle \sin t, -\cos t \rangle \cdot \langle -\sin t, \cos t \rangle \, dt$$
$$= \int_0^{2\pi} -\sin^2 t - \cos^t \, dt = -\int_0^{2\pi} 1 \, dt = \boxed{-2\pi}$$

(b) Use Green's Theorem to compute the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the counterclockwise curve along the unit circle starting at (1,0), bounding the unit disk \mathbb{D}^2 .

Since $F_1(x, y) = y$ and $F_2(x, y) = -x$, we have

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathbb{D}^2} \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \, dA = \iint_{\mathbb{D}^2} -1 - 1 \, dA = -2 \iint_{\mathbb{D}^2} 1 \, dA = \boxed{-2\pi}$$