Quiz 6

1. Find the volume of region bounded by the upper half of the sphere $x^{2}+y^{2}+z^{2}=9$ and the plane $z=1$. [Hint: Use cylindrical coordinates.]
Recall that in Quiz 5 we set up the integral in $x y z$-coordinates and got

$$
V=\int_{-\sqrt{8}}^{\sqrt{8}} \int_{-\sqrt{8-x^{2}}}^{\sqrt{8-x^{2}}} \int_{1}^{\sqrt{9-x^{2}-y^{2}}} 1 d z d y d x
$$

which was basically impossible to evaluate exactly. We'll get an exact answer, however, by using cylindrical coordinates. Namely, we realize $0 \leq \theta \leq 2 \pi, 1 \leq z \leq 3$ and $0 \leq r \leq \sqrt{9-z^{2}}$, since $r^{2}+z^{2}=\left(x^{2}+y^{2}\right)^{+} z^{2}=9:$

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{1}^{3} \int_{0}^{\sqrt{9-z^{2}}} r d r d z d \theta \\
& =2 \pi \int_{1}^{3}\left[\frac{1}{2} r^{2}\right]_{0}^{\sqrt{9-z^{2}}} d z \\
& =\pi \int_{1}^{3} 9-z^{2} d z \\
& =\left.\pi\left(9 z-\frac{1}{3} z^{3}\right)\right|_{1} ^{3} \\
& =\pi\left(27-9-9+\frac{1}{3}\right) \\
& =\frac{28 \pi}{3}
\end{aligned}
$$

