Quiz 4

1. Find and classify the critical points of $f(x, y)=\ln \left(x^{2}+y^{2}+1\right)$.

Let's compute some partial derivatives:

$$
\begin{aligned}
f_{x}(x, y) & =\frac{2 x}{x^{2}+y^{2}+1} \\
f_{x x}(x, y) & =\frac{-2 x^{2}+2 y^{2}+2}{\left(x^{2}+y^{2}+1\right)^{2}} \\
f_{y}(x, y) & =\frac{2 y}{x^{2}+y^{2}+1} \\
f_{y y}(x, y) & =\frac{2 x^{2}-2 y^{2}+2}{\left(x^{2}+y^{2}+1\right)^{2}} \\
f_{x y}(x, y) & =\frac{-2 x y}{\left(x^{2}+y^{2}+1\right)^{2}}
\end{aligned}
$$

OK, so $f_{x}(x, y)=0$ implies $x=0$ and $f_{y}(x, y)=0$ implies $y=0$, so in order that both be zero, i.e. that $\nabla f(x, y)=(0,0)$, we must have $(x, y)=(0,0)$, and this is the only critical point. From the above calculations we see that $f_{x x}(0,0)=2, f_{y y}(0,0)=2$ and $f_{x y}(0,0)=f_{y x}(0,0)=0$, so

$$
D=\operatorname{det} H f(0,0)=\operatorname{det}\left[\begin{array}{ll}
f_{x x}(0,0) & f_{x y}(0,0) \\
f_{y x}(0,0) & f_{y y}(0,0)
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=4>0
$$

Since $f_{x x}(0,0)=2>0$, we see that $(0,0)$ is a local minimum. Indeed, here is a graph of this function around $(0,0)$:

2. Find the absolute maximum and absolute minimum of $f(x, y)=\frac{1}{\|(x, y)\|}$ on $1 \leq\|(x, y)\| \leq 2$.

It's easier to do this problem if you switch to polar coordinates, since when we let $x=r \cos \theta$ and $y=r \sin \theta$, then

$$
\|(x, y)\|=\sqrt{x^{2}+y^{2}}=\sqrt{r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}=r
$$

so that the function is in fact

$$
f(r, \theta)=\frac{1}{r}
$$

where $1 \leq r \leq 2$. Obviously this function will have no critical points and it will achieve its maximum on the circle $r=1$.

But let us check this directly: $f_{x}=\frac{-x}{\left(x^{2}+y^{2}\right)^{3 / 2}}$ and $f_{y}=\frac{-y}{\left(x^{2}+y^{2}\right)^{3 / 2}}$, so that $\nabla f(0,0)=(0,0)$ only when $(x, y)=(0,0)$, but this lies outside of the annulus $1 \leq\|(x, y)\| \leq 2$. Hence f has no critical points in this region. We have only to check the boundary, (x, y) on the circles of radius 1 and 2 , and clearly there $f(x, y)=1$ and $1 / 2$ respectively. Thus the maximum of f occurs on the circle of radius $1,\|(x, y)\|=1$, where f has a value of 1 .

