Quiz 3

1. Suppose a differentiable real-valued function $f(x, y)$ satisfies the equation

$$
a f_{x}+b f_{y}=c
$$

for all x and y, where a, b and c are arbitrary constants. Introduce the new variables

$$
w=b x-a y \quad \text { and } \quad z=y
$$

(so that $x=\frac{1}{b}(w+a z)$ and $y=z$), and define $g(w, z) \equiv f(x, y)=f\left(\frac{1}{b}(w+a z), z\right)$ (Note: this implies $f(x, y)=g(w, z)=g(b x-a y, y))$. Use the chain rule to show that

$$
b g_{z}=c
$$

[Hint: Start with the first equation and derive the second from it.]
We just use the chain rule, noting that $f=g$:

$$
\begin{aligned}
c & =a f_{x}+b f_{y} \\
& =a g_{x}+b g_{y} \\
& =a\left(g_{w} w_{x}+g_{z} z_{x}\right)+b\left(g_{w} w_{y}+g_{z} z_{y}\right) \\
& =a\left(b g_{w}+0 g_{z}\right)+b\left(-a g_{w}+1 g_{z}\right) \\
& =b g_{z}
\end{aligned}
$$

Remark: If we wanted to be more explicit about our functions and use matrices, we would let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the change-of-variable function

$$
(w, z)=\varphi(x, y)=(b x-a y, y)
$$

sending (x, y) coordinates to (w, z) coordinates, so that $w=\varphi_{1}(x, y)=b x-a y$ and $z=\varphi_{2}(x, y)=y$. Then,

$$
D \varphi(x, y)=\left[\begin{array}{ll}
\varphi_{1 x}(x, y) & \varphi_{1_{y}}(x, y) \\
\varphi_{2 x}(x, y) & \varphi_{2 y}(x, y)
\end{array}\right]=\left[\begin{array}{cc}
b & -a \\
0 & 1
\end{array}\right]
$$

Now, the key observation is that $f(x, y)=(g \circ \varphi)(x, y)$, and this allows us to use the chain rule:

$$
\begin{aligned}
{\left[\begin{array}{ll}
f_{x}(x, y) \quad f_{y}(x, y)
\end{array}\right] } & =D f(x, y) \\
& =D(g \circ \varphi)(x, y) \\
& =D g(\varphi(x, y)) \cdot D \varphi(x, y) \\
& =\left[\begin{array}{ll}
g_{w}(\varphi(x, y)) & g_{z}(\varphi(x, y))
\end{array}\right]\left[\begin{array}{cc}
\varphi_{1 x}(x, y) & \varphi_{1 y}(x, y) \\
\varphi_{2 x}(x, y) & \varphi_{2}(x, y)
\end{array}\right] \\
& =\left[\begin{array}{ll}
g_{w}(w, z) & g_{z}(w, z)
\end{array}\right]\left[\begin{array}{cc}
b & -a \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
b g_{w}(w, z) & -a g_{w}(w, z)+g_{z}(w, z)
\end{array}\right]
\end{aligned}
$$

Comparing components, we get

$$
\begin{aligned}
& f_{x}(x, y)=b g_{w}(w, z) \\
& f_{y}(x, y)=-a g_{w}(w, z)+g_{z}(w, z)
\end{aligned}
$$

and therefore, plugging these into $c=a f_{x}+b f_{y}$ we get our result:

$$
c=a f_{x}(x, y)+b f_{y}(x, y)=a\left(b g_{w}(w, z)\right)+b\left(-a g_{w}(w, z)+g_{z}(w, z)\right)=b g_{z}(w, z)
$$

2. (Implicit Differentiation in From a Multivariate Viewpoint) Suppose that $y(x)$ is defined implicitly by $G(x, y(x))=0$, where G is a given function of two variables.
(a) If $y(x)$ and G are differentiable and $\partial G / \partial y \neq 0$, show that

$$
\frac{d y}{d x}=-\frac{\partial G / \partial x}{\partial G / \partial y}
$$

Taking the partial derivative of both sides of $0=G(x, y(x))$ with respect to x and using the chain rule we get

$$
0=\frac{\partial}{\partial x} 0=\frac{\partial}{\partial x} G(x, y(x))=\frac{\partial G}{\partial x} \frac{d x}{d x}+\frac{\partial G}{\partial y} \frac{d y}{d x}=\frac{\partial G}{\partial x}+\frac{\partial G}{\partial y} \frac{d y}{d x}
$$

so solve this for $\frac{d y}{d x}$ and you're done:

$$
\frac{d y}{d x}=-\frac{\partial G / \partial x}{\partial G / \partial y}
$$

(b) Use part (a) to find $\frac{d y}{d x}$ if $x^{2}+y^{3}+e^{y}=0$. For what points (x, y) is the assumption $\partial G / \partial y \neq 0$ valid here?

Here $G(x, y(x))=x^{2}+y^{3}+e^{y}$, so $\partial G / \partial x=2 x$ and $\partial G / \partial y=3 y^{2}+e^{y}$. Consequently, by part (a)

$$
\frac{d y}{d x}=-\frac{\partial G / \partial x}{\partial G / \partial y}=-\frac{2 x}{3 y^{2}+e^{y}}
$$

Now, this will only work if we're not dividing by 0 , of course. But $3 y^{2}+e^{y}$ is strictly greater than 0 for all $y \in \mathbb{R}$, so we needen't worry. Thus, this works for all $(x, y) \in \mathbb{R}^{2}$.

