Quiz 2

1. For real numbers a, b and t such that $2 a>b$ and $t>0$, let $\mathbf{u}=(t a, t, t)$, and $\mathbf{v}=(t b, 2 t, 2 t)$. Find t such that $\|\mathbf{u} \times \mathbf{v}\|=\sqrt{2}$.

Since

$$
2=\|\mathbf{u} \times \mathbf{v}\|^{2}=\left\|\left(0, b t^{2}-2 a t^{2}, 2 a t^{2}-b t^{2}\right)\right\|^{2}=t^{4}(b-2 a)^{2}+t^{4}(2 a-b)^{2}=2 t^{4}(2 a-b)^{2}
$$

we have

$$
t^{4}=\frac{1}{(2 a-b)^{2}}
$$

and so, taking the positive 4 th root (since $t>0$), we get

$$
t=\frac{1}{\sqrt{2 a-b}}
$$

2. Find an equation of the plane that contains the line $y=-3 x+4$ in the plane $z=2$, and goes throught the point $(1,3,7)$.
Find three points P, Q and R in the plane first: we are given $z=2 \Longrightarrow y=-3 x+4$, so setting $x=0$ and 1 gives $P=(0,4,2)$ and $Q=(1,1,2) . R=(1,3,7)$ is already given to us. Then let

$$
\mathbf{u}=\overrightarrow{P Q}=\langle 1,-3,0\rangle \quad \text { and } \quad \mathbf{v}=\overrightarrow{P R}=\langle 1,-1,5\rangle
$$

Taking their cross product gives us a normal to the plane:

$$
\mathbf{n}=\mathbf{u} \times \mathbf{v}=\langle-15,-5,2\rangle
$$

and from this we get the equation of the plane, picking, say P, as our representative point:

$$
-15(x-0)-5(y-4)+2(z-2)=0 \quad \text { or } \quad 15 x+5 y-2 z=16
$$

3. The points $(5,0,0),(0,-3,0)$ and $(0,0,2)$ form a triangle.
(a) Find the lengths of the sides of the triangle.

$$
\begin{aligned}
a & =\sqrt{(5-0)^{2}+(0-(-3))^{2}+(0-0)^{2}}=\sqrt{34} \\
b & =\sqrt{(5-0)^{2}+(0-0)^{2}+(0-2)^{2}}=\sqrt{29} \\
c & =\sqrt{(0-0)^{2}+(-3-0)^{2}+(0-2)^{2}}=\sqrt{13}
\end{aligned}
$$

(b) Find the area of the triangle.

Let \mathbf{u} be the vector from $(5,0,0)$ to $(0,-3,0)$ and \mathbf{v} be the vector from $(5,0,0)$ to $(0,0,2)$, so $\mathbf{u}=\langle 5,3,0\rangle, \mathbf{v}=\langle 5,0,-2\rangle$. Then, $\mathbf{u} \times \mathbf{v}=\langle-6,10,-15\rangle$, and

$$
A=\frac{1}{2}\|\mathbf{u} \times \mathbf{v}\|=\frac{19}{2}
$$

(c) Find the equation of the plane containing the triangle.

Using $\mathbf{u}=\langle 5,3,0\rangle, \mathbf{v}=\langle 5,0,-2\rangle$ and $\mathbf{u} \times \mathbf{v}=\langle-6,10,-15\rangle$ from part (b), and knowing that $\mathbf{u} \times \mathbf{v}$ is normal to the plane, we're pretty much done. Pick a point in the plane, say $(5,0,0)$, then the equation of the plane is

$$
-6(x-5)+10(y-0)-15(z-0)=0 \quad \text { or } \quad 6 x-10 y+16 z=30
$$

